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Course OverviewCourse Overview

Image/Video Compression and Communications
Fundamentals: motivation, signal properties & formats, 
information theory, variable-length coding, quantization
Transform coding framework, JPEG, JPEG2000
Video coding and international video standards
Image/Video communications

Goals
Focus on big pictures, key concepts, elegant ideas, no 
rigorous treatment
Provide hands-on experience with simple Matlab exercises
Illustrate applications of the previous two DSPSS courses!
Hopefully lead to future research and developments



OutlineOutline
Image/video properties & formats

Image/video signals: properties & formats, color spaces
General image/video coding framework
Error & similarity measurements
Statistical modeling of image/video signals

Lossless variable-length coding
Information theory, entropy, entropy coding
Huffman coding
Arithmetic coding

Lossy coding
Quantization: optimal conditions, scalar quantization, 
embedded quantization



Image/Video Everywhere!Image/Video Everywhere!
Fax machines: transmission of binary images
Digital cameras: still images
Digital camcorders: video sequences with audio
Digital television broadcasting
Digital video disk (DVD)
Personal video recorder (PVR, TiVo)
Images on the World Wide Web
Video streaming
Video conferencing
Image/video on cell phones, PDAs
High-definition televisions (HDTV)
Medical imaging: X-ray, MRI, ultrasound, telemedicine
Military imaging: multi-spectral, satellite, infrared, microwave



Digital Bit RatesDigital Bit Rates
A picture is worth a thousand words?
Size of a typical color image

For display
640 x 480 x 24 bits = 7372800 bits = 92160 bytes

For current mainstream digital cameras (5 Mega-pixel)
2560 x 1920  x 24 bits =  117964800 bits = 14745600 bytes

For an average word
4-5 characters/word, 7 bits/character: 32 bits ~= 4 bytes

Bit rate: bits per second for transmission
Raw digital video (DVD format)

720 x 480 x 24 x 24 frames: ~200 Mbps
CD Music

44100 samples/second x 16 bits/sample x 2 channels ~ 1.4 Mbps   



Reasons for CompressionReasons for Compression
Digital bit rates

Terrestrial TV broadcasting channel: ~20 Mbps
DVD: 10...20 Mbps
Ethernet/Fast Ethernet: <10/100 Mbps
Cable modem downlink: 1-3 Mbps
DSL downlink: 384...2048 kbps
Dial-up modem: 56 kbps max 
Wireless cellular data:  9.6...384 kbps 

Compression = Efficient data representation!
Data need to be accessed at a different time or location
Limited storage space and transmission bandwidth
Improve communication capability



Personal Video Recorder (PVR)Personal Video Recorder (PVR)

MPEG2 Quality
Best 7.7 Mbps
High 5.4 Mbps
Medium 3.6 Mbps
Basic 2.2 Mbps



Continuous & Discrete RepresentationsContinuous & Discrete Representations

CD, DVD, cellular phones, 
digital camera & camcorder, 
digital television, inkjet 
printer

Switched capacitor filter, 
speech storage chip, half-tone 
photography

Discrete
-Time
(Space)

telegraph

Local telephone, cassette-tape 
recording & playback,  
phonograph,  photograph
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-Time
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MultiMulti--Dimensional Digital SignalsDimensional Digital Signals
Images: 2-D digital signals

pixel
or
pel

Video Sequences: 3-D digital signals, 
a collection of 2-D images called 
frames

x

y
t

black
p=0

gray
p=128

white
p=255

colors:
combination
of RGB



Color Spaces: RGB & Color Spaces: RGB & YCrCbYCrCb
RGB

Red Green Blue, typically 8-bit per sample for each color plane

YCrCb
Y: luminance, gray-scale component
Cr & Cb: chrominance, color components, less energy than Y 
Chrominance components can be down-sampled without much 
aliasing
YCrCb, also known as YPrPb, is used in component video
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Another Color Space: YUVAnother Color Space: YUV
YUV is another popular color space, similarly to YCrCb

Y: luminance component
UV: color components
YUV is used in PAL/NTSC broadcasting
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Popular Signal FormatsPopular Signal Formats
CIF: Common Intermediate Format

Y resolution: 352 x 288
CrCb/UV resolution: 176 x 144
Frame rate: 30 frames/second progressive
8 bits/pixel(sample)

QCIF: Quarter Common Intermediate Format
Y resolution: 176 x 144
CrCb/UV resolution: 88 x 72 
Frame rate: 30 frames/second progressive
8 bits/pixel (sample)

TV – NTSC
Resolution: 704 x 480, 30 frames/second interlaced

DVD – NTSC 
Resolution: 720 x 480, 24 – 30 frames/second 
progressive

Y

Cr
Cb

Y

Cr
Cb

Frame 
n

Frame 
n+1



HighHigh--Definition Television (HDTV)Definition Television (HDTV)
720i

Resolution: 1280 x 720, interlaced

720p 
Resolution: 1280 x 720, progressive

1080i
Resolution: 1920 x 1080, interlaced

1080p
Resolution: 1920 x 1080, progressive

Interlaced
Video
Frame

odd field

even field



Examples of Still ImagesExamples of Still Images



Examples of Video SequencesExamples of Video Sequences

Frame 1 51 71 91 111

Observations of Visual Data
There is a lot of redundancy, correlation, strong structure within 
natural image/video
Images

Spatial correlation: a lot of smooth areas with occasional edges
Video

Temporal correlation: neighboring frames seem to be very similar



Image/Video Compression Framework Image/Video Compression Framework 

reconstructed
signal

original
signal

1−Q

Q

1−T

T
compressed
bit-stream

1−E

E

Information theory
VLC
Huffman
Arithmetic
Run-length

Quantization

Prediction
Transform
De-correlation

Channel



Deterministic versus RandomDeterministic versus Random

Deterministic
Signals whose values can be specified explicitly
Example: a sinusoid

Random
Digital signals in practice can be treated as a 
collection of random variables or a random process
The symbols which occur randomly carry information

Probability theory
The study of random outcomes/events 
Use mathematics to capture behavior of random 
outcomes and events



Random VariableRandom Variable
Random variable (RV)

A random variable X is a mapping which 
assigns a real number x to each possible 
outcome of a random experiment
A random variable X takes on a value x from a 
given set. Thus it is simply an event whose 
outcomes have numerical values
Examples

X in coin toss, X=1 for Head, X=0 for Tail
The temperature outside our lecture hall at 
any moment t
The pixel value at location x, y in frame n
of a future Hollywood blockbuster
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ξ
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Probability Density FunctionProbability Density Function

Probability density function (PDF) of a RV X
Function              defined such that:

Histogram of X !!!
Main properties:
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PDF ExamplesPDF Examples
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Discrete Random VariableDiscrete Random Variable

RV that takes on discrete values only
PDF of discrete RV = discrete histogram
Example: how many Heads in 3 independent 
coin tosses?

x

)(xf X

0 1 2 3

1/8

3/8 3/8

1/8

[ ] [ ]kkXk
k

kXX xXPxPxxxPxf ==−=∑ )(h            wit)()( δ



ExpectationExpectation

Expected value
Let g(X) be a function of RV X. The expected value 
of g(X) is defined as

Expectation is linear!
Expectation of a deterministic constant is itself:

Mean
Mean-square value
Variance
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Cross Correlation & CovarianceCross Correlation & Covariance

Cross correlation
X, Y: 2 jointly distributed RVs
Joint PDF:

Expectation: 

Cross-correlation:

Cross covariance
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Independence & CorrelationIndependence & Correlation

Marginal PDF:

Statistically independent:

Uncorrelated:

Orthogonal:
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Random ProcessRandom Process
Random process (RP)

A collection of RVs
A time-dependent RV
Denoted {X[n]}, {X(t)} or simply X[n], X(t)
We need N-dimensional joint PDF to characterize X[n]!
Note: the RVs made up a RP may be dependent or 
correlated
Examples:

Temperature X(t) outside campus
A sequence of binary numbers transmitted over a 
communication channel
Speech, music, image, video signals



WideWide--Sense StationarySense Stationary
Wide-sense stationary (WSS) random process (RP)

A WSS RP is one for which E[X[n]] is independent of n
and                                           only depends on the 
difference (m – n)

Mean:
Auto-correlation sequence:
Energy:

Variance:

Co-variance:
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White Random ProcessWhite Random Process
Power spectral density

The power spectrum of a WSS RP is defined as the 
Fourier transform of its auto-correlation sequence

White RP
A RP is said to be white if any pair of samples are 
uncorrelated, i.e.,

White WSS RP

White 0-mean WSS RP
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Stochastic Signal ModelStochastic Signal Model
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Error or Similarity MeasuresError or Similarity Measures

Mean Square Error (MSE)

Mean Absolute Difference (MAD)

Max Error

Peak Signal-to-Noise Ratio (PSNR)
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Information TheoryInformation Theory

A measure of information
The amount of information in a signal might not 
equal to the amount of data it produces
The amount of information about an event is closely 
related to its probability of occurrence

Self-information
The information conveyed by an event A with 
probability of occurrence P[A] is 
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Information = Degree of UncertaintyInformation = Degree of Uncertainty
Zero information

The sun rises in the east
If an integer n is greater than two, then 
has no solutions in non-zero integers a, b, and c

nnn cba =+

Little information
It will rain in Hà Nội next week
Most cellular phones in the future will have multimedia 
capability

A lot of information
A Vietnamese mathematician proves P = NP
Việt Nam will win the 2010 World Cup with Quyến Béo
winning the Golden Boot!



Two Extreme CasesTwo Extreme Cases

source
encoder channel

source
decoder

tossing
a fair coin

P(X=H)=P(X=T)=1/2: (maximum uncertainty) 
Minimum (zero) redundancy, compression impossible

P(X=H)=1,P(X=T)=0: (minimum redundancy) 
Maximum redundancy, compression trivial (1 bit is enough)

head 
or 

tail?
channel duplication

tossing a coin with
two identical sides

HHHH…
TTTT…

Redundancy is the opposite of uncertainty



Weighted SelfWeighted Self--informationinformation
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EntropyEntropy
Entropy

Average amount of information of a source, more precisely, 
the average number of bits of information required to 
represent the symbols the source produces
For a source containing N independent symbols, its entropy 
is defined as 

Unit of entropy: bits/symbol
C. E. Shannon, “A mathematical theory of communication,”
Bell Systems Technical Journal, 1948
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Entropy ExampleEntropy Example
Find and plot the entropy of the binary code in 
which the probability of occurrence for the 
symbol 1 is p and for the symbol 0 is 1-p

[ ] [ ]

( ) ( )pppp

XPXPH i
1i

i

−−−−=

−= ∑
=

1log1log    

log

22

2

2

bit/symbol 1
2
1

2
1

2
1log

2
1

2
1log

2
1

2
1

22 =+=−−=⇒= Hp

lbits/symbo 0.8113 
4
3log

4
3

4
1log

4
1

4
1

22 =−−=⇒= Hp

bit/symbol 01log10log00 22 =−−=⇒= Hp

0 1 p

1
H

1/2



Entropy ExampleEntropy Example

Find the entropy of a DNA sequence containing four 
equally-likely symbols {A,C,T,G}
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So, how do we design codes to represent DNA sequences?

P[A]=1/2;  P[C]=1/4;  P[T]=P[G]=1/8;  H=?
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FixedFixed--Length CodesLength Codes
Properties

Use the same number of bits to represent all possible 
symbols produced by the source
Simplify the decoding process

Examples
American Standard Code for Information Interchange 
(ASCII) code
Bar codes

One used by the US Postal Service
Universal Product Code (UPC) on products in stores 
Credit card codes  



ASCII CodeASCII Code
ASCII is used to encode and communicate alphanumeric 
characters for plain text
128 common characters: lower-case and upper-case letters, 
numbers, punctuation marks… 7 bits per character
First 32 are control characters (for example, for printer 
control)
Since a byte is a common structured unit of computers, it is 
common to use 8 bits per character – there are an additional 
128 special symbols
Example

01010011     01010011    01010000     01010011    01000100

83        83        80         83        68
S         S          P          S          DCharacter

Dec. index
Bin. code



ASCII TableASCII Table



VariableVariable--Length CodesLength Codes

Main problem with fixed-length codes: inefficiency
Main properties of variable-length codes (VLC)

Use a different number of bits to represent each symbol
Allocate shorter-length code-words to symbols that occur 
more frequently
Allocate longer-length code-words to rarely-occurred 
symbols
More efficient representation; good for compression

Examples of VLC
Morse code
Shannon-Fano code
Huffman code 
Arithmetic code



Morse Codes & TelegraphyMorse Codes & Telegraphy
Morse codes

- • - •C• - - -J

- - • -Q• • - •F

- • • -X• - - •P

- • - -Y• - • •L

- - •G• - -W

- • -K• - •R

- • • •B• • • -V

- • •D• • -U

- •N• -A

- - - -CH• • • •H

- - -O• • •S

- -M• •I

-T•E
“What hath God wrought?”, DC –
Baltimore, 1844
Allocate shorter codes for more 
frequently-occurring letters & numbers
Telegraph is a binary communication 
system – dash: 1; dot: 0



Issues in VLC DesignIssues in VLC Design
Optimal efficiency

How to perform optimal code-word allocation (in an efficiency 
standpoint) given a particular signal?

Uniquely decodable
No confusion allowed in the decoding process  
Example: Morse code has a major problem!

Message: SOS. Morse code: 000111000
Many possible decoded messages: SOS or VMS?

Instantaneously decipherable
Able to decipher as we go along without waiting for the entire 
message to arrive

Algorithmic issues
Systematic design?
Simple fast encoding and decoding algorithms?



VLC ExampleVLC Example

33/1630/1631/1631/163H=30/16
Average
Length

11011111000000001100P[E]=1/16E
11111010000001011P[D]=1/16D
10110100001010P[C]=1/8C
01101001001P[B]=1/4B
00011000P[A]=1/2A

Code 4Code 3Code 2Code 1FLCProb.Symbol
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VLC ExampleVLC Example

33/1630/1631/1631/163H=30/16
Average
Length

11011111000000001100P[E]=1/16E
11111010000001011P[D]=1/16D
10110100001010P[C]=1/8C
01101001001P[B]=1/4B
00011000P[A]=1/2A

Code 4Code 3Code 2Code 1FLCProb.Symbol

Uniquely decodable – Self-synchronizing: Code 1, 2, 3. 
No confusion in decoding
Instantaneous: Code 1, 3. No need to look ahead.
Prefix condition  =  uniquely decodable & instantaneous: 
no codeword is a prefix of another



ShannonShannon--FanoFano CodeCode
Algorithm

Line up symbols by decreasing probability of occurrence
Divide symbols into 2 groups so that both have similar 
combined probability
Assign 0 to 1st group and 1 to the 2nd

Repeat step 2 

Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

0
0
1
1
1

0
1
0
1
1

0
1

Average code-word length =
0.35 x 2 + 0.17 x 2 + 0.17 x 2

+ 0.16 x 3 + 0.15 x 3
= 2.31 bits/symbol

Code-word

H=2.2328 bits/symbol



Huffman CodeHuffman Code
Shannon-Fano code [1949]

Top-down algorithm: assigning code from most 
frequent to least frequent
VLC, uniquely & instantaneously decodable (no 
code-word is a prefix of another)
Unfortunately not optimal in term of minimum 
redundancy

Huffman code [1952]
Quite similar to Shannon-Fano in VLC concept
Bottom-up algorithm: assigning code from least 
frequent to most frequent
Minimum redundancy when probabilities of 
occurrence are powers-of-two
In JPEG images, DVD movies, MP3 music



Huffman Coding AlgorithmHuffman Coding Algorithm
Encoding algorithm

Order the symbols by decreasing probabilities
Starting from the bottom, assign 0 to the least probable 
symbol and 1 to the next least probable
Combine the two least probable symbols into one 
composite symbol
Reorder the list with the composite symbol
Repeat Step 2 until only two symbols remain in the list

Huffman tree
Nodes: symbols or composite symbols
Branches: from each node, 0 defines one branch while 1 
defines the other

Decoding algorithm
Start at the root, follow the branches based on the bits 
received
When a leaf is reached, a symbol has just been decoded

Root

1 0
01

Leaves

Node



Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

1
0

Symbols
A
DE
B
C

Prob.
0.35
0.31
0.17
0.17

1
0

Symbols
A
BC
DE

Prob.
0.35
0.34
0.31

1
0

Symbols
BCDE
A

Prob.
0.65
0.35

1
0

01BC DE
01B

C

01

D

E

1 0 ABCDE

Huffman Tree
Huffman Codes

A     0
B     111
C     110
D     101
E     100 Average code-word length = E[L] =

0.35 x 1 + 0.65 x 3 = 2.30 bits/symbol 

H=2.2328 bits/symbol



Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
1/2
1/4
1/8
1/16
1/16

0
1

Symbols
A
B
C
DE

Prob.
1/2
1/4
1/8
1/8

0
1

Symbols
A
B
CDE

Prob.
1/2
1/4
1/4

0
1

Symbols
A
BCDE

Prob.
1/2
1/2

0
1

Huffman Codes
A     0
B     10
C     110
D     1110
E     1111

Average code-word length = E[L] = 
0.5 x 1 + 0.25 x 2 + 0.125 x 3 + 0.125 x 4 = 1.875 bits/symbol  = H

01CDE B

1
1DE C

E

0

D

1 0
ABCDE

Huffman Tree

0



Huffman ShortcomingsHuffman Shortcomings

Difficult to make adaptive to data changes
Only optimal when 
Best achievable bit-rate = 1 bit/symbol 

ikiXP
2
1][ =

Question: What happens if we only have 2 symbols 
to deal with? A binary source with skewed statistics?

Example: P[0]=0.9375; P[1]=0.0625.                                
H = 0.3373 bits/symbol. Huffman: E[L] = 1.
One solution: combining symbols!



Extended Huffman CodeExtended Huffman Code

Symbols
AA
AB
BA
BB

Prob.
225/256
15/256
15/256
1/256

Symbols
A=0
B=1

Prob.
15/16
1/16

H=0.3373 bits/symbol

H=0.6746 bits/symbol

01
1

BB BA
AB

1 0
AA

Huffman Tree

0

Average code-word length = E[L] = 1 x 225/256 + 2 x 15/256
+ 3 x 15/256 + 3 x 1/256 = 1.1836 bits/symbol >> 2

Larger grouping yield better performance
Problems

Storage for codes
Inefficient & time-consuming 
Still not well-adaptive 



Arithmetic Coding: Main IdeaArithmetic Coding: Main Idea
Peter Elias in Robert Fano’s class!
Large grouping improves coding performance; however, we 
do not want to generate codes for all possible sequences
Wish list

a tag (unique identifier) is generated for the sequence to be encoded
easy to adapt to statistic collected so far
more efficient than Huffman

Main Idea: tag the sequence to be encoded with a number in 
the unit interval [0, 1) and send that number to the decoder

Review: binary representation of fractions
2

21
10 11.02225.05.075.0 =+=+= −−

2
9732

10 011000101.02222384765625.0 =+++= −−−−



Coding ExampleCoding Example

10110.1X7
000.2X6
110.3X5

101000.05X4
1000.1X3
010.2X2

101010.05X1
Huffman CodeProbabilitySymbol

String to encode: X2 X2 X3 X3 X6 X5 X7

Huffman: 01 01 100 100 00 11 1011                   18 bits



Arithmetic Encoding ProcessArithmetic Encoding Process

10110.1X7
000.2X6
110.3X5

101000.05X4
1000.1X3
010.2X2

101010.05X1
HuffmanProbSymString to encode: X2 X2 X3 X3 X6 X5 X7

X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

range = high – low
new_high = low + range x subinterval_high
new_low = low+range x subinterval_low

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

Final interval = [0.0713336,0.0713360)
Send to decoder: 0.07133483886719

2
16151074 0000110001001001.022222 =++++ −−−−−

16 bits



Arithmetic Decoding ProcessArithmetic Decoding Process

low=0; high=1; range=high – low
REPEAT

Find index i such that

OUTPUT SYMBOL
high = low + range x subinterval_high
low = low + range x subinterval_low
range = high – low 

UNTIL END

l_highsubinterva  l_lowsubinterva ≤
−

≤
range

lowvalue

UPDATE



Arithmetic Decoding ExampleArithmetic Decoding Example
X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

05.005.010
25.025.010

X250 
1

0...071334.0050

0;1;0

2

=×+=
=×+=

⇒≤
−

≤

===

low
high

. .

rangehighlow

06.005.02.005.0
1.025.02.005.0

X250 1067.0
20.0

05.0...071334.0050 2

=×+=
=×+=

⇒≤=
−

≤

low
high

. .

...X350 2834.0
04.0

06.0...071334.0250 3⇒≤=
−

≤ . .



Adaptive Arithmetic CodingAdaptive Arithmetic Coding
Three symbols {A, B, C}. Encode: BCCB…

A B C

0

33%

66%

1

P[A]=1/3

P[B]=1/3

P[C]=1/3

0.333

0.666

25%

75%

P[A]=1/4

P[B]=1/2

P[C]=1/4

0.5834

0.666

20%

60%

P[A]=1/5

P[B]=2/5

P[C]=2/5

0.6334

0.666

16%

50%

P[A]=1/6

P[B]=1/3

P[C]=1/2

Final interval = [0.6390, 0.6501)

2
1098731

10

1010001111.0222222

6396.0

=+++++

==
−−−−−−

output
Decode?



Arithmetic Coding: NotesArithmetic Coding: Notes

Arithmetic coding approaches entropy!
Near-optimal: finite-precision arithmetic, a whole 
number of bits or bytes must be sent
Implementation issues:

Incremental output: should not wait until the end of the 
compressed bit-stream; prefer incremental transmission scheme
Prefer integer implementations by appropriate scaling

[ ]∏=
i

iXP interval final of Size

[ ]
[ ] output  the tobits log

 scontribute y probabilit of  Symbol

2 i

ii

XP
XPX



RunRun--Length CodingLength Coding

Main idea
Encoding long runs of a single symbol by the length of the run

Properties
A lossless coding scheme
Our first attempt at inter-symbol coding
Really effective with transform-based coding since the transform 
usually produces long runs of insignificant coefficients
Run-length coding can be combined with other entropy coding 
techniques (for example, run-length and Huffman coding in 
JPEG)



RunRun--Length CodingLength Coding
Example: How do we encode the following string?

48476
L

48476
L

zeros 37zeros 14

0      0   1   0      0   1   0   0   0   0   0   3   0   5   0   0   14 −−

Run-length coding:
(run-length, size) binary amplitude value

number of consecutive zeros
before current non-zero symbol

number of bits needed to
encode this non-zero symbol

actual value of the 
non-zero symbol in binary

(0,4) 14 (2,3) 5 (1,2) -3 (5,1) 1 (14,1) -1 (0,0)



RunRun--Length CodingLength Coding
48476

L
48476

L

zeros 37zeros 14

0      0   1   0      0   1   0   0   0   0   0   3   0   5   0   0   14 −−

(run-length, size) binary value

(0,4) 14   (2,3) 5   (1,2) -3   (5,1) 1   (14,1) -1   (0,0)

LSB…MSBsign bit
0: positive
1: negative

always 1, no
need to encode

0004

11-3
100-4

10-2
1-1
01

002
013

⎩
⎨
⎧ >−

=
−

otherwise,
0,2

   ofbinary 
1

S
SS

S
size

raw binaryHuffman or
arithmetic coding



QuantizationQuantization

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore, MD 21218



ReminderReminder

reconstructed
signal

original
signal

1−Q

Q

1−T

T
compressed
bit-stream

1−E

E

Information theory
VLC
Huffman
Arithmetic
Run-length

Quantization



QuantizationQuantization
Entropy coding techniques 

Perform lossless coding
No flexibility or trade-off in bit-rate versus distortion

Quantization 
Lossy non-linear mapping operation: a range of 
amplitude is mapped to a unique level or codeword
Approximation of a signal source using a finite 
collection of discrete amplitudes
Controls the rate-distortion trade-off
Applications

A/D conversion
Compression



Typical Typical QuantizerQuantizer

x yQ
Forward Quantizer

y

input output

clipping/overflow

clipping/overflow

stepsizeon quantizatiΔ =i

ix1−ix
decision boundaries

iy

quantization level
or codeword

{ }
i

iii

iii

yy
xxxxIei

xxIx

=⇒
<≤=

=∈

−

−

1

1

|  .,.
),[

111

110

101

000

001

010

011

100

x

quantization cell/bin/interval

ℜ Ζ



Typical Inverse Typical Inverse QuantizerQuantizer

y xQ
Inverse Quantizer

^-1

x

y

clipping, overflow
Δ

iy

ix1−ix
decision boundaries

111

110

101

000

001

010

011

100

1−iy

ix̂1ˆ −ix

Typical reconstruction

Quantization error
2

ˆ 1−+
= ii

i
xxx

xxq −= ˆ



MidMid--rise versus Midrise versus Mid--treadtread

x

y
Δ

ix̂

y
Δ

ix̂

Uniform Midrise Quantizer Uniform Midtread Quantizer
Popular in ADC
For a b-bit midrise

Popular in compression
For a b-bit midtread

maxx
maxx− x

maxx
maxx−

b

x
2

2 max=Δ
12

2 max

−
=Δ b

x

ix̂



Quantization ErrorsQuantization Errors
Approximation error

Lack of quantization resolution, too few 
quantization levels, too large quantization step-size
Causes staircase effect
Solution: increases the number of quantization 
levels, and hence, increase the bit-rate

Clipping error
Inadequate quantizer range limits, also known as 
overflow
Solution

Requires knowledge of the input signal
Typical practical range for a zero-mean signal 

RMS

RMS

xx
xx
4

4

min

max

−=
=

∫=
T

RMS dttx
T

x
0

2 )(1



Quantization: Error ModelQuantization: Error Model

+x x̂

q

x xQ
^-1Q

xxqqxx −=⇒+= ˆˆ
Quantization error:

anceerror varion quantizati][

])ˆ([])ˆ[()ˆ,(

2
 offunction 

22

==

−=−=

qE

xxExxExxD
x

43421

Mean-squared distortion measure:

( )

xq
xy

xfx X

 oft independen RVmean -0   
RV   ˆ   RV;   

 PDF   with  RV   
Assumptions:



would like to minimize

Quantization Error VarianceQuantization Error Variance

dxxfxxxxExxD X )()ˆ(])ˆ[(),ˆ( 22 ∫
∞

∞−
−=−=

L+−+−= ∫∫ dxxfxxdxxfxx X

x

xX

x

x
)()ˆ()()ˆ( 3

2

2

1

2
2

2
1

∑ ∫
=

+ −=
L

k
X

x

x k dxxfxxk

k1

2 )()ˆ(1

+x x̂

q



Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

22
   :boundError Δ

≤≤
Δ

− q
x

y
Δ

ix̂

maxx
maxx− 2

ˆ  :tionreconstrucCenter 1−+
= ii

i
xxx

maxmax  :input Bounded xxx ≤≤−

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

b-bit Quantizer



Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

?)(][),ˆ( 22 === ∫
∞

∞−
dqqfqqExxD Q

b-bit quantizer

b

x
2

2 max=Δ

2 offactor  aby   reduce 
  double  bit/symbol 1by   Increase

Δ⇒
⇒ Lb



SignalSignal--toto--Noise RatioNoise Ratio
Definition of SNR in decibel (dB)

2

2

10log10
q

x
dBSNR

σ
σ

=
power of the signal

power of the noise
For quantization noise

Δ−=
Δ

= 10
2

102

2

10 log2012log1012log10 x
x

dBSNR σσ

Suppose that we now add 1 more bit to our Q resolution:

2
Δ

=Δ′ Δ′−=⇒ 10
2

10
' log2012log10 xdBSNR σ

2log20                
2log20log2012log10

10

1010
2

10
'

+=
+Δ−=⇒

dB

xdB

SNR
SNR σ

dBSNRSNR dBdB 6' +≈⇒



ExampleExample

Design a 3-bit uniform quantizer for a signal with range [0,128]

823 ==LMaximum possible number of levels:

16
8

128minmax ==
−

=Δ
L

xxQuantization stepsize:

{ }7,6,5,4,3,2,1,0=iyQuantization levels:

{ }120,104,88,72,56,40,24,8ˆ =ixReconstruction levels:

8≤qMaximum quantization error:



Example of Popular QuantizationExample of Popular Quantization
Round

Floor

Ceiling

xxroundy  integer tonearest )( ==

⎣ ⎦ xxxfloory an smaller thinteger largest )( ===

⎡ ⎤ xxxceily n larger thainteger smallest )( ===

y

ix̂
x

maxx
minx

Uniform midtread quantizer from Round and Floor

⎥⎦
⎥

⎢⎣
⎢ +
Δ

=⎟
⎠
⎞

⎜
⎝
⎛
Δ

= 5.0xxroundy

Δ

yx ×Δ=ˆ



Quantization from RoundingQuantization from Rounding

x

4=Δ

( )

yxx
x

4ˆ  ;
4

roundy  4;

16 ,16  :input Bounded

=⎟
⎠
⎞

⎜
⎝
⎛==Δ

−∈

Uniform Quantizer, step-size=4

y

6 10 14–14 –6–10 2–2



Optimal Scalar QuantizationOptimal Scalar Quantization

( )
minimized is ˆsuch that  ˆ Find

 PDFknown  with RV   
,x)xD(x&x

xfx

kk

X

Problem Statement:

minimized is ˆsuch that   find ,ˆGiven ,x)xD(xx kk

Optimal Encoder for a Given Decoder:

Notes:
Non-uniform quantizer under consideration
Reconstruction can be anywhere, not necessarily 
the center of the interval 

k

L

k
X

x

x k xdxxfxxxxD k

k

   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=



Optimal Scalar QuantizationOptimal Scalar Quantization

k

L

k
X

x

x k xdxxfxxxxD k

k

   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=



Optimal Scalar QuantizationOptimal Scalar Quantization

minimized is ˆsuch that  ˆ find ,Given ,x)xD(xx kk

Optimal Decoder for a Given Encoder:

k

L

k
X

x

x k xdxxfxxxxD k

k

ˆ   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=



LloydLloyd--Max Max QuantizerQuantizer

!x̂for  solve  to xand
 for x solve  toˆ need  weely,Unfortunat

kk

kkx

Main idea [Lloyd 1957] [Max 1960]
solving these 2 equation iteratively until D converges

Assumptions
Input PDF is known and stationary
Entropy has not been taken into account

Nearest
Neighbor

Partitioning

Centroid
Computation

Input Codebook Updated Codebook

mC 1+mC

index of m-th iteration



Embedded QuantizationEmbedded Quantization

LSBMSBS F2F1

Discard N integer bit planes 
+ all fractional bit planes

y

x

x xQ
^-1Q y

Also called bit-plane quantization, progressive quantization 
Most significant information is transmitted first
JPEG2000 quantization strategy



Embedded Forward QuantizationEmbedded Forward Quantization

x

N2=Δ

( )
discarded planesbit t significanleast  2N

16 ,16  :input Bounded
=

−∈x

Embedded Quantizer, N=2

y

4–4 8–16 12 16–8–12
Dead Zone



Embedded Inverse QuantizationEmbedded Inverse Quantization

0

1

1

0

1

Original 
symbol 
x = 22

X

X

X

X

1

Truncate
4 bit planes

Range=[16, 32) 

X

X

X

0

1

Receive 1
refinement bit
Range=[16, 24) 

X

X

1

0

1

Receive 2
refinement bits
Range=[20, 24) 

N-bit-plane truncation =  scalar quantization with N2=Δ

x = 24^ x = 20
= 24 – 4

^ x = 22
= 20 + 2

^



Vector QuantizationVector Quantization

n-dimensional generalization of scalar quantizer

Nearest neighbor and centroid rule still apply

CQ n →ℜ   :

n-dimensional
input vectors

codebook, containing 
code-vectors or codewords

2ℜ

1x

2x2ℜ

1x

2x

Vector Q
Separable
Scalar Q



SummarySummary
Introduction to image/video signals

Visual information is everywhere in our everyday life
Efficient representation (compression) of image/video facilitates 
visual information storage, archival, communications and even 
processing
Compression is achievable since visual data contains a lot of 
redundancy, both spatially and temporally

Variable-length coding
Has its roots from information theory
Provides effective lossless coding capability 
Huffman coding & arithmetic coding achieve bit rates close to 
entropy – the lowest achievable bit rate 

Quantization
Allows lossy signal coding and provides trade-off between bit rate 
and reconstruction quality 


