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Course Overview

o Image/Video Compression and Communications

* Fundamentals: motivation, signal properties & formats,
information theory, variable-length coding, quantization

" Transform coding framework, JPEG, JPEG2000
= Video coding and international video standards
" Image/Video communications

o Goals

= Focus on big pictures, key concepts, elegant ideas, no
rigorous treatment

* Provide hands-on experience with simple Matlab exercises
= [llustrate applications of the previous two DSPSS courses!
= Hopefully lead to future research and developments




Outline

+ Image/video properties & formats
= Image/video signals: properties & formats, color spaces
= General image/video coding framework
" Error & similarity measurements

= Statistical modeling of image/video signals

o Lossless variable-length coding
= Information theory, entropy, entropy coding
* Huffman coding
= Arithmetic coding

+ Lossy coding

= (uantization: optimal conditions, scalar quantization,
embedded quantization




Image/Video Everywhere!

Fax machines: transmission of binary images
Digital cameras: still images

Digital camcorders: video sequences with audio
Digital television broadcasting

Digital video disk (DVD)

Personal video recorder (PVR, T1Vo)

Images on the World Wide Web

Video streaming

Video conferencing

Image/video on cell phones, PDAs
High-definition televisions (HDTV)

Medical imaging: X-ray, MRI, ultrasound, telemedicine
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Military imaging: multi-spectral, satellite, infrared, microwave




Digital Bit Rates

+ A picture is worth a thousand words?

IC

+ Size of a typical color image
= For display
= 640 x 480 x 24 bits = 7372800 bits = 92160 bytes
= For current mainstream digital cameras (5 Mega-pixel)
= 2560 x 1920 x 24 bits = 117964800 bits = 14745600 bytes
= For an average word
= 4-5 characters/word, 7 bits/character: 32 bits ~= 4 bytes

+ Bit rate: bits per second for transmission
= Raw digital video (DVD format)
= 720 x 480 x 24 x 24 frames: ~200 Mbps
= CD Music
= 44100 samples/second x 16 bits/sample x 2 channels ~ 1.4 Mbps




Reasons for Compression

o Digital bit rates
= Terrestrial TV broadcasting channel: ~20 Mbps

= DVD: 10...20 Mbps

= Ethernet/Fast Ethernet: <10/100 Mbps
= Cable modem downlink: 1-3 Mbps

= DSL downlink: 384...2048 kbps
* Dial-up modem: 56 kbps max

= Wireless cellular data: 9.6...384 kbps

+ Compression = Efficient data representation!
= Data need to be accessed at a different time or location
* Limited storage space and transmission bandwidth
* Improve communication capability




MPEG2 Quality
Best
High
Medium
Basic

7.7 Mbps
5.4 Mbps
3.6 Mbps
2.2 Mbps

(Choose your default Video Recording Quality, This wil
apply only 10 new programs you select for recording, not to
iems aready on the To Do List

Best Quality (31 hws, 11 min)
(50 s, 29m|n)
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Continuous & Discrete Representations

Continuous-Amplitude

Discrete-Amplitude

X(t) X(t) A:

Continuous /\\/\/\/\f : \|_|7
-Time i : o
(Space) Local telephone, cassette-tape !

recording & playback,
phonograph, photograph telegraph
X[n]ﬂ X[n
Shgrete 111017 m TNMJHH
: > N
-Time T T T I T T >N || CD, DVD, cellular phones,
(Space) Switched capacitor filter, digital camera & camcorder,

speech storage chip, half-tone
photography

digital television, inkjet
printer




Multi-Dimensional Digital Signals

black gray white o Video Sequences: 3-D digital signals,
p=0 p=128 p=255 a collection of 2-D 1mages called
frames

colors: I

-@ combination
& of RGB
8

Yy |

\/



Color Spaces: RGB & YCrCb
+ RGB
= Red Green Blue, typically 8-bit per sample for each color plane

¢ YCrCb

= Y: luminance, gray-scale component

* Cr & Cb: chrominance, color components, less energy than Y

= Chrominance components can be down-sampled without much
aliasing

= YCrCb, also known as YPrPb, is used in component video

Y| [ 0257 0504 0098 | R 16
C, |=| 0439 -0.368 -0.071|G |+]128
Cy| |[-0.148 —0.291 0439 | B| [128

sample L L F+— Cr,Chb
® o0 00 o TS

B
ﬁ _———0 0 06 0 o o
%



Another Color Space: YUV

+ YUV 1s another popular color space, similarly to YCrCb

" Y: luminance component

= UV: color components
* YUV is used in PAL/NTSC broadcasting

Y] [ 0299 0587 0.114 |[R
C, |=|-0.147 -0.289 0436 |G
Cy| | 0615 -0.515 -0.100] B

U: 88 x 72 V:88x 72




- Popular Signal Formats

¢ CIF: Common Intermediate Format A

= Y resolution: 352 x 288 Frame
= CrCb/UV resolution: 176 x 144 N

= Frame rate: 30 frames/second progressive

= § bits/pixel(sample)

ﬁ ¢ QCIF: Quarter Common Intermediate Format
< = Y resolution: 176 x 144

= CrCb/UYV resolution: 88 x 72 X

= Frame rate: 30 frames/second progressive
Frame

n+1

= 8 bits/pixel (sample)
o TV -—NTSC
@ = Resolution: 704 x 480, 30 frames/second interlaced

ﬁ e DVD -NTSC
= Resolution: 720 x 480, 24 — 30 frames/second

% progressive !

v

Cr

Cb

v

Cr
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o 7201

= Resolution

o 720p

= Resolution

o 10801

= Resolution

+ 1080p

= Resolution

Video
Frame

Interlaced

: 1280 x 720, interlaced

: 1280 x 720, progressive

: 1920 x 1080, interlaced

: 1920 x 1080, progressive

High-Definition Television (HDTV)

odd field

even field



Examples of Still Images




¢ Observations of Visual Data

= There 1s a lot of redundancy, correlation, strong structure within
natural 1image/video

= Images
= Spatial correlation: a lot of smooth areas with occasional edges
= Video
= Temporal correlation: neighboring frames seem to be very similar



Image/Video Compression Framework

_______________ Quantization compressed
original | | . bit-stream
signal '
Channel
reconstructed

signal

Prediction Information theory

Transform VLC

De-correlation Huffman

Arithmetic

Run-length



Deterministic versus Random

o Deterministic
= Signals whose values can be specified explicitly
= Example: a sinusoid

¢ Random

= Daigital signals 1n practice can be treated as a
collection of random variables or a random process

* The symbols which occur randomly carry information

¢ Probability theory
* The study of random outcomes/events

= Use mathematics to capture behavior of random
outcomes and events




_Random Variable

+ Random variable (RV) €2

= A random variable X is a mapping which
assigns a real number X to each possible
outcome of a random experiment & ,

<

= A random variable X takes on a value X from a
given set. Thus it 1s simply an event whose
outcomes have numerical values

= Examples
= X 1n coin toss, X=1 for Head, X=0 for Tail

" The temperature outside our lecture hall at
any moment t

= The pixel value at location X, Yy in frame n
of a future Hollywood blockbuster

v



Probability Density Function

+ Probability density function (PDF) of a RV X
= Function f, (X) defined such that:

P[x, < X <x,]|= _f f. (X)dx

= Histogram of X !!!
= Main properties:

= £, (X)>0,VX




PDF Examples
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f 1:x (X):{
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Discrete Random Variable

4« o RV that takes on discrete values only
@ o PDF of discrete RV = discrete histogram
ﬁ + Example: how many Heads in 3 independent

ﬁ coin tosses?
o 38 38
\ fX (X)
1/8 1/8
2 O ST 2N = 3 %

W H0=2PxWx-x] with P (x)=P[X=x]

v
%



Expectation

IC

+ Expected value

= Let g(X) be a function of RV X. The expected value
of g(X) is defined as

E[g(X)]= | g(x)f (x)dx

= Expectation is linear!

= Expectation of a deterministic constant is itself: E[C] =0
+ Mean iy, =E[X]= fwxfx (x)alx
+ Mean-square value E[Xz]
+ Variance or = EKX — Hy )2J

4P
-4 E[x2]= 0% + 42
%




Cross Correlation & Covariance

o Cross correlation
= X, Y: 2 jointly distributed RVs

= Joint PDF: Y, %
Px, <X <Xy, <Y <y,]= [ [ f (X, y)ixdy
- Expectatlon B

)= [ [ a(xy)fe (X, y)dxdy
= Cross- correlatlon =

Ry = E[XY]

+ Cross covariance
Cyy = E[(X — Hy )(Y — Hy )]

ﬁ = Ryy =Cyy + g 14y
b5



Independence & Correlation

o Marginal PDF: Ty (x)= foo for (X, y dy

fy (Y) = Jjo Fay (X, y)dx

o Statistically independent: fy (X, y)= f (x)f,(y)

o Uncorrelated:  E[XY|=E[X]E]Y] ieC,, =0

- t‘r\

[ -
e, 0.0
TAR

) -9 o, |

SN AN
N _' .
o W

Iwith 0-mean RVs
‘@ ¢ Orthogonal: E[XY]=0

v
%



Random Process

IC

+ Random process (RP)
= A collection of RVs
= A time-dependent RV
= Denoted {X[n]}, {X(t)} or simply X[n], X(t)
= We need N-dimensional joint PDF to characterize X[n]!

= Note: the RVs made up a RP may be dependent or
correlated

= Examples:
= Temperature X(t) outside campus

= A sequence of binary numbers transmitted over a
communication channel

= Speech, music, image, video signals
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Wide-Sense Stationary

+ Wide-sense stationary (WSS) random process (RP)

= A WSS RP is one for which E[X[n]] is independent of n
and R(m, n) = E[X [m]X [n]] only depends on the
difference (m — n)

= Mean: M, = E[X [n]]
= Auto-correlation sequence: Ry (k)=E[X[n]X[n—k]]
ey E[X[n]= Ry (0

= Variance: oy = E{(X[n:—mx )2J — ool (0)—m>2(

= Co-variance: C,, (k) B E[(X [n]— m, )(X [n = k]_ My )]

What happens if the WSS RP has 0-mean?
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White Random Process

Power spectral density

= The power spectrum of a WSS RP is defined as the
Fourier transform of its auto-correlation sequence

xx(ejw) ZRXX ejwk

White RP
= A RP 1s said to be white if any pair of samples are
uncorrelated, i.e., E[X _n]X [mli] = E[X [nﬁ]E[X [m]], m==n
White WSS RP m, k #0
R = Ry
o () {ai Fme, k=0
White 0-mean WSS RP : (e jw)
Ryx (k) * (7)2< 2 0'>2<
0 "k 0 "o



‘Stochastic Signal Model

win] [ H(z)= X[n]

g white 0-mean = Zn L AR(N) signal

WSS Gaussian

& exFor speech: N = 10 to 20
o Forimages: N=1!and a, = p=0.95

HeWE) - o X (2)=W(2)+ 2 X (2)
& X(z)-pr'X(2)=W(z)
< x[n]=wn|+ px[n—1]

AR(1) Signal




Error or Similarity Measures

¢+ Mean Square Error (MSE)

N-1 5
L, -norm error : MSE :ﬁz E(‘Xi =0 )
i=0

1 N -1 5

L, -norm error : MAD = — Equ - X, )

[
1=0

ﬁ ¢+ Mean Absolute Difference (MAD)

+ Max Error
L -norm error : MaxError = m_ax{E(lX. G

)

+ Peak Signal-to-Noise Ratio (PSNR)
M 2

g PSNR =10log,, P
%

M = maximum peak - to - peak value



Variable Length Coding: Introduction to
Lossless Compression
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Information Theory

o A measure of information

* The amount of information in a signal might not
equal to the amount of data it produces

* The amount of information about an event is closely
related to its probability of occurrence

¢ Self-information

* The information conveyed by an event A with
probability of occurrence P[A] is

ot
|, =log, L =—log, P[A]

P[A]




Information = Degree of Uncertainty

¢ Zero information
= The sun rises 1n the east

= If an integer n is greater than two, th&1' +b" ="
has no solutions in non-zero integers a, b, and

+ Little information
= [t will rain in Ha NO1 next week
= Most cellular phones in the future will have multimedia
capability
+ A lot of information

= A Vietnamese mathematician proves P = NP

= Viét Nam will win the 2010 World Cup with Quyén Béo
winning the Golden Boot!




Two Extreme Cases

¢ % N J

tossing source source
. — | — channel > il TG

a fair coin en er de er

% S A N

P(X=H)=P(X=T)=1/2: (maximum uncertainty)
Minimum (zero) redundancy, compression impossible

tossing a coin with | head R T X HHHH. ..
two identical sides or 1 < =
tail? T =

P(X=H)=1,P(X=T)=0: (minimum redundancy)
Maximum redundancy, compression trivial (1 bit is enough)

Redundancy 1s the opposite of uncertainty




Weighted Self-information

P 1(P) |1, (p)=p-1(p)
0 00 0

1/2 1 1/2
1 0 0

As p evolves from 0 to 1, weighted self-information

| ,(p)=—p-log, p firstincreases and then decreases

Question: Which value of p maximizes 1,(p)?




Maximum of Weighted Self-information
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Entropy

+ Entropy

= Average amount of information of a source, more precisely,
the average number of bits of information required to
represent the symbols the source produces

= For a source containing N independent symbols, its entropy
is defined as

N
Z P log2 ]

=1

= Unit of entropy: bits/symbol

= C. E. Shannon, “A mathematical theory of communication,”
ﬁ Bell Systems Technical Journal, 1948



Entropy Example

* Fmd and plot the entropy of the bmary code 1n
which the probability of occurrence for the
symbol 1 1s p and for the symbol 0 1s 1-p

2 TH
H __Z P[ ]10g2 [ ] Lr
=—plog, p—(1-p)log,(1- p)
R VA
1 1 F=l [ =1 =1 .
P _§:> H _—Elogzz—zlogz 5 —§+§—1b1t/symb01
1 1 i o< 3

===l Sl — — —ln— i =0.8113 bits/symbol

ﬁ 4 4Rl 4

g p=0=H =-0log, 0—1log, I =0 bit/symbol



~ Entropy Example

+ Find the entropy of a DNA sequence containing four
equally-likely symbols {A,C,T,G}

1

H— (_%bgz Zj x4 =log, 4 = 2 bits/symbol

« P[A]=1/2; P[C]=1/4; P[T]=P[G]=1/8; H=?

1 1t 1 Foudi] | 1
H=—1og,———log,———log, ———log, —
5 g22 4 g24 2 g28 2 g28

s + uk o 2 T = %bits/ symbol < 2 bits/symbol

ﬁ ¢ So, how do we design codes to represent DNA sequences?



Fixed-Length Codes

+ Properties

= Use the same number of bits to represent all possible
symbols produced by the source

= Simplify the decoding process

+ Examples

= American Standard Code for Information Interchange
(ASCII) code

= Bar codes
" One used by the US Postal Service
= Universal Product Code (UPC) on products in stores
= Credit card codes




ASQII Code .r

o ASCII 1s used to encode and communicate alphanumeric
characters for plain text

IC

+ 128 common characters: lower-case and upper-case letters,
numbers, punctuation marks... 7 bits per character

o First 32 are control characters (for example, for printer
control)

+ Since a byte 1s a common structured unit of computers, it 1s
common to use 8 bits per character — there are an additional
128 special symbols

+ Example
-@ Character D S P S S
ﬁ Dec. index 68 83 80 83 83

% Bin. code 01000100 01010011 01010000 01010011 01010011



ASCII Table
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| Variable-Length Ccdes |

+ Main problem with fixed-length codes: iefficiency
+ Main properties of variable-length codes (VLC)

= Use a different number of bits to represent each symbol

» Allocate shorter-length code-words to symbols that occur
more frequently

= Allocate longer-length code-words to rarely-occurred
symbols

= More efficient representation; good for compression

+ Examples of VLC

= Morse code

= Shannon-Fano code
= Huffman code

= Arithmetic code




Morse Codes & Telegraphy

Morse codes
o “What hath God wrought?”, DC —

: Lis i Baltimore, 1844
o M= == & Allocate shorter codes for more
o o frequently-occurring letters & numbers
: _ : CN:H : o Telegraph is a binary communication
1 et - system — dash: 1; dot: O
o0 0 - B -0060
. Pen tip

shre KS =2 <Transmitter> Iron piece
o G e ) / Paper tape
et WV TP o "i.} Transmission key - = m ~~~~~~
S S X W b Eh‘- Spring . [ M Tape mnw&mam
ce -0 Q - -0 - J.. ,l."""""""""l ‘

R pate '
T~ o¥cT W Y o NTTDitmoms  <RECEIVED




*

*

*

*

Issues in VLC Design

Optimal efficiency
= How to perform optimal code-word allocation (in an efficiency
standpoint) given a particular signal?
Uniquely decodable
= No confusion allowed in the decoding process

= Example: Morse code has a major problem!
= Message: SOS. Morse code: 000111000
= Many possible decoded messages: SOS or VMS?

Instantaneously decipherable

= Able to decipher as we go along without waiting for the entire
message to arrive

Algorithmic issues
= Systematic design?

= Simple fast encoding and decoding algorithms?



VLC wExamlpler

Prob. FLC Code 1 Code 2 Code 3 Code 4
A P[A]=1/2 000 ] ] 0 00
B P[B]=1/4 001 01 10 10 01
C P[C]=1/8 010 001 100 110 10
D P[D]=1/16 | 011 0001 1000 1110 11
E P[E]=1/16 | 100 00001 10000 1111 110
A
e S =2 16 3 S iettliea1 /i AR e s 3l
Length
N
H =-> P[X;]log, P[X|] Codel:
i=1
1 B ] e 1 E[L]z1><l-|—2><l+3><1—|—4><L
% ml0s il g e lap 2 & et b b B RIS
2 DR 4 8 8 16 16
+5xi—2bits/symbol
:l+l+§ S0 3 blts/symbol 16 16
240" Q6. 16
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VLC wExamlpler

Prob. FLC Codel | Code2 | Code3 | Code4

A | P[AI=12 | 000 1 1 0 00

B | P[BI=1/4 | o001 01 10 10 01

c | plc=18 | o010 001 100 110 10

D |PD]=1/16| o011 0001 1000 | 1110 11

E | P[E=1/16 | 100 | 00001 | 10000 | 1111 110
ﬁ:ﬁe H=30/16 3 S 116tE a1/ 16 L REE D6t 33/l

g%» < Uniquely decodable — Self-synchronizing: Code 1, 2, 3.
F No confusion in decoding

+ Instantaneous: Code 1, 3. No need to look ahead.

ﬁ + Prefix condition = uniquely decodable & instantaneous:
% no codeword is a prefix of another



IrSham.lonw-Fano. C9de

o Algorithm

= Line up symbols by decreasing probability of occurrence

= Divide symbols into 2 groups so that both have similar
combined probability

= Assign 0 to 1% group and 1 to the 2d
= Repeat step 2

+ Example H=2.2328 bits/symbol
Symbols Prob. Code-word
A 0.35 00 Average code-word length =
B 0.17 01 0.35x2+0.17x2+0.17x2
C 0.17 10 +0.16 x3+0.15x3
D 0.16 110 = 2.31 bits/symbol
E 0.15 111



quﬁ;}an qug

+ Shannon-Fano code [1949]

" Top-down algorithm: assigning code from most
frequent to least frequent

IC

* VLC, uniquely & instantaneously decodable (no
code-word 1s a prefix of another)

= Unfortunately not optimal in term of minimum
redundancy

o Huffman code [1952]

" Quite similar to Shannon-Fano in VLC concept

= Bottom-up algorithm: assigning code from least
frequent to most frequent

* Minimum redundancy when probabilities of
occurrence are powers-of-two

" In JPEG images, DVD movies, MP3 music




Huftfman Coding Algorithm

+ Encoding algorithm
= QOrder the symbols by decreasing probabilities

= Starting from the bottom, assign O to the least probable
symbol and 1 to the next least probable

= Combine the two least probable symbols into one
composite symbol

= Reorder the list with the composite symbol
= Repeat Step 2 until only two symbols remain in the list

+ Huffman tree
= Nodes: symbols or composite symbols
= Branches: from each node, 0 defines one branch while 1
defines the other

@ + Decoding algorithm Leaves
= Start at the root, follow the branches based on the bits

& received

= When a leaf i1s reached, a symbol has just been decoded




Huffman Coding Example

Symbols Prob. Symbols Prob. Symbols Prob.
A 0.35 A 0.35 A 0.35
B 0.7 EEEp DE 03] Emmp BC 0341
C 0.17 B 0.17 | 1 DE 0.31]0
D 0.16 | 1 C 0.17 |0
Eoe - 0.15 0 1

Huffman Tree

Huffman Codes Symbols Prob.
A 0 BCDE 0.65 1
B 111 A 035 0
C 110
D 101 H=2.2328 bits/symbol
E 100

Average code-word length = E[L] =
0.35x 1 + 0.65 x 3 = 2.30 bits/symbol




Huffman Coding Example

Symbols Prob. Symbols Prob. Symbols Prob.
A 1/2 A 1/2 A 1/2
B /4 mEEp B /4 mEmp B 1/4
C 1/8 C 1/8 |0 CDE 1/4 |1
D 1/16 |0 DE 1/8 |1
EZe 16, 1 1
Huffman Codes Huffman Tree
A 0 Symbols Prob.
B 10 A 172 0
C 110 BCDE 12 1

D 1110
E 1111

ﬁ Average code-word length = E[L] =

@ 0.5x1+025x2 +0.125x 3 +0.125 x 4 = 1.875 bits/symbol = H
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Huffman Shortcomings

Difficult to make adaptive to data changes
: 1

Only optimal when P[X;]= o

Best achievable bit-rate = 1 bit/symbol

Question: What happens 1f we only have 2 symbols
to deal with? A binary source with skewed statistics?
= Example: P[0]=0.9375; P[1]=0.0625.
H = 0.3373 bits/symbol. Huffman: E[L] = 1.

= One solution: combining symbols!




| Ezgtended Hufﬁnan IrCode.

Symbols Prob. Symbols  Prob.

A=0 15/16 AA 225/256
B=1 1/16 - AB 15/256
BA 15/256

" H=0.3373 bits/symbol BR 1256

+ Problems

= Storage for codes

= Still not well-adaptive

H=0.6746 bits/symbol

+ Larger grouping yield better performance

= Inefficient & time-consuming

ﬁ Average code-word length = E[L] =1 x 225/256 + 2 x 15/256

% +3 x 15/256 + 3 x 1/256 = 1.1836 bits/symbol >> 2



Arithmetic Coding: Main Idea

o Peter Elias in Robert Fano’s class!

o Large grouping improves coding performance; however, we
do not want to generate codes for all possible sequences
g o Wishlist
_ = atag (unique identifier) 1s generated for the sequence to be encoded
= easy to adapt to statistic collected so far
= more efficient than Huffman

+ Main Idea: tag the sequence to be encoded with a number 1n
the unit interval [0, 1) and send that number to the decoder

3 + Review: binary representation of fractions
'@ « 0.75,=0.5+025=2"+27=0.11,

i = 0.384765625, =22 +27+27+27 =0.011000101,



- Coding Example

IC

Symbol Probability | Huffman Code

X1 0.05 10101

X2 0.2 01

X3 0.1 100

X4 0.05 10100

X5 0.3 11

X6 0.2 00

X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

Huffman: 01 01 100 10000 11 1011 18 bits




0.05
0

V=
0.90+

0.701

0.40 1
03571

0.25T1

Anthmetlc Encodmg Process

X7

X4
X3
X2

Xt

0105 Tk ORaie; 074
X6

/
/
/
/
X5
’

e/ e/
’ ’
L L
== : ==
~ ~
~ ~
~ ~
~ ~
~ ~

005 066 0.070

@ Final interval =[0.0713336,0.0713360)
Send to decoder: 0.07133483886719

YA R D R I

=%

X6

String to encode: X2 X2 X3 X3 X6 X5 X7
range = high — low
new_high =
new_ low =

low + range x subinterval high
low+range x subinterval low

16 bits

=(0.0001001001000011,

0.0710  0.07128 0.071312

00714 007136 0071336 0.0713360

= o D)
X6
X5 X5
X4
] X3
X2
0?6)7(113336
Sym | Prob | Huffman
X1 | 0.05 10101
X2 0.2 01
X3 0.1 100
X4 | 0.05 10100
X5 0.3 11
X6 | 0.2 00
X7 0.1 1011




Arithmetic Decoding Process

¢ low=0; high=1; range=high — low

o REPEAT
* Find index i such that
. value —low : .
subinterval low < <subinterval high
range

= OUTPUT SYMBOL

= high = low + range x subinterval high

= Jow = low + range x subinterval low } UPDATE
= range = high — low

« UNTIL END




Arithmetic Decodmg Example
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low =0;high=1;range =0
0.071334...—-0 . we— 0.
0.05 < 1 < (Pbesxe 0.05 < 4 0713320 Sl 0.1067 <025 = X,

high=0+1x0.25=0.25 high=0.05+0.2x0.25=0.1
low=0+1x0.05=10.05 low=0.05+0.2x0.05=0.06
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Adaptive Arithmetic Coding

o Three symbols {A, B, C}. Encode: BCCB... | ”
1 0 6_66 ________________ 0.666  0.066 A £
PIC1=1/3 P[C]=1/4
ﬁ [C] 75%..\\[ ] P[C]=2/5 P[C]=1/2
_ 66%1 S 60%
ﬁ P[B]=1/3 P[BJ=1/2 S 50%T
Ll P[B]=2/5 P[B]=1/3
prat=1a| T 20%+
[A]= PlA]=1/4 . |P[A]=1/ 1\‘6\4’ P[A]=1/6
0 0.333 0.5834 0.6334

“' ' Final interval = [0.6390, 0.6501) 2

output = 0.6396,, =
B 2202742512042 201010001111,

=%



Arithmetic Coding: Notes

¢ Sizeof finalinterval=] | P[X;]

¢ Symbol X, of probabilitylf P[Xi]contributes
log, P[X, |bits to the output

+ Arithmetic coding approaches entropy!
+ Near-optimal: finite-precision arithmetic, a whole
number of bits or bytes must be sent

+ Implementation issues:

= Incremental output: should not wait until the end of the
compressed bit-stream; prefer incremental transmission scheme

= Prefer integer implementations by appropriate scaling




Run-Length Coding

IE

+ Main idea
* Encoding long runs of a single symbol by the length of the run

+ Properties

= A lossless coding scheme

= Qur first attempt at inter-symbol coding

= Really effective with transform-based coding since the transform
usually produces long runs of insignificant coefficients

= Run-length coding can be combined with other entropy coding
techniques (for example, run-length and Huffman coding in
JPEG)




Run-Length Coding

+ Example: How do we encode the following string?

14 zeros 37 zeros
N N

N

140050-30000010:-0-<=10--0

+ Run-length coding:

= (run length, size) binary amplitude value
¥ number of consecutlve ZEeros

actual value of the

before current non-zero symbol )
non-zero symbol in binary

number of bits needed to
encode this non-zero symbol

0,4) 14 (23)5 (1,2)-3 5,1)1 (14,1)-1 (0,0



Run-Length Coding

14 zeros 37 zeros
)\ N

r

iRl ) Tt VO e S e N B (R

always 1, no
(run-length, size) binary value need to encode

sign bit MXB ...| LSB
0: positive 7/

1: negative

i 4 0

: S ad 25|ze—1, S > O 00

binary of S = ; 3 01

‘S 5 otherwise > 00

= 0414 (23)5 (12)-3 (5.1)1 (14,1)-1 (0,0) 11 ‘1)
-2 10

Huffman or raw binary -3 11
arithmetic coding -4 100
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Quantization

+ Entropy coding techniques
= Perform lossless coding
= No flexibility or trade-off in bit-rate versus distortion

+ Quantization

= Lossy non-linear mapping operation: a range of
amplitude 1s mapped to a unique level or codeword

= Approximation of a signal source using a finite
collection of discrete amplitudes

= Controls the rate-distortion trade-off
= Applications

= A/D conversion

= Compression




Typical Quantizer

Forward Quantizer
Xel, =[x_,X) 4 Q y
ie, | ={x|x_ <x<x! .
1nput output
== ‘R /
y A
1114 quantization level
110  or codeword T
101 / clipping/overflow
100 Y.
011 A; = quantization stepsize
PE quantization cell/bin/interval
001 /
| | | | > X
/ o Xiip X

clipping/overflow decision boundaries



Typical Inverse Quantizer

+ Typical reconstruction

g = X + X y
)
+ Quantization error 4
q=X-X Inverse Quantizer
y 4
R
110 —
101 —
100 Y.
S
010
o | | )A(i_1| )A(i | | |
/‘ 000 ._% e XJA ol X

% clipping, overflow decision boundaries

<>



yA
A,
=V ; Xi X
| ‘ | ‘ ‘ | . | >
Xmax

Uniform Midrise Quantizer

¢ Popular in ADC

o For a b-bit midrise
X
A s 2I§ax

y
LAY
— Mmax =T X
—oo—o
)’Z_ max
n |
Xi

Uniform Midtread Quantizer

+ Popular in compression

+ For a b-bit midtread

A: 2t))(max
2° ~1




Quantization Errors

¢ Approximation error

= Lack of quantization resolution, too few
quantization levels, too large quantization step-size

= (Causes staircase effect

= Solution: increases the number of quantization
levels, and hence, increase the bit-rate

+ Clipping error

= Inadequate quantizer range limits, also known as
overflow

= Solution

= Requires knowledge of the input signal
= Typical practical range for a zero-mean signal

Xmax 3 4XRMS 1 T
. D

min




Quantization: Error Model

¢ Assumptions:
X RV with PDF f,(x)

y RV; X RV
g 0-mean RV independent of X

+ Quantization error:
X=X+0=0g=X—X

¢+ Mean-squared distortion measure:
D(x,%) = E[(X=x)"]= E[(Xx=%)"]
function of X

= E[q”] = quantization error variance




Quantization Error Variance

A 4 x>

D(R,X) = E[(X = %)*] j (x = %)% £, (x)dx

= LXZ (X — )21)2 fy (X)dx + J;XB(X -~ )A(z)2 fo (X)dX +---

- i [ x= ) 5 (x)dx
k=1 K

would like to minimize




Umform Quantlzatlon Bounded Input

y A Bounded mput: —X < X<X
S . L e
e Center reconstruction : X, = >
|
0. — X A A
feis Error bound : — > << =
b-bit Quantizer
q
 fo(@)

1

\II\ max A
A A 2
%

hlgh bit-rate ——
assumption 2




q 2 X
- max P f (C)
A ox b tel )
‘@ ¥ b-bit quantizer 4
£ ‘XE.VN\\.\VX - T A NB
i high bit-rate — — o
% assumption 2 2

Increase b by 1 bit/symbol = double L
— reduce A by a factor of 2

4



Signal-to-Noise Ratio

¢ Definition of SNR in decibel (dB) |
b /power of the signal
SNRy; =10log,, —

Oq +———  power of the noise

a .« For quantization noise

1202
SNR,, =101log,, Afx =10log, 125> —20log,, A
Suppose that we now add 1 more bit to our Q resolution:
A’ =% — SNR, =10log,, 120 —20log,, A’

= SNR; =10log,, 120, —20log,, A+201log,, 2
= SNR +20log,, 2
= SNR,; ~ SNR, +6dB




Examp1¢

1= 1=

Design a 3-bit uniform quantizer for a signal with range [0,128]

ﬁ + Maximum possible number of levels: L =2’ =8

o . X — X Vet
¢ Quantization stepsize: A =-—"2_—T0 = =16

L 8
+ Quantization levels: Y, = {0,1,2,3,4,5,6,7}

+ Reconstruction levels: X ={8,24,40,56,72,88,104,120}

+ Maximum quantization error: |q| <3




Examl?le of Popular Qu?ntization

+ Round
y = round (X) = nearest integer to X

+ Floor
y = floor(x) =| x | = largest integer smaller than x

s Ceiling
y =cell(x) = |_X_| = smallest integer larger than X

X X
| =round| — [=| —+0.5
AR (A) LA J
X; X=AxYy
?(min . ‘ X
+ 5 Xmax

% Uniform midtread quantizer from Round and Floor



Quantization from Rounding

Bounded input : x € (~16,16)

O O OO OO—O— -
A 10 2 (a2 16 el 14 X

Uniform Quantizer, step-size=4




Optimal Scalar Quantization

+ Problem Statement:
X RV with known PDF f, (x)

Find X, &X, such that D(X,X) is minimized

ﬁ + Optimal Encoder for a Given Decoder:
A Given X, , find X, such that D(X,X) is minimized

L Xk+1 ~
Minimize D(k,x):Zj (x=%)*f, (X)dX w.rt X,
k=1 =k

@ + Notes:
= Non-uniform quantizer under consideration

& = Reconstruction can be anywhere, not necessarily
§ _ the center of the interval



Optimal Scalar Quantization

L Xk+1 A
Minimize D()?,x):z_[ (x=%)2f, 00X w.rt X,

k=1 X




Optimal Scalar Quantization

+ Optimal Decoder for a Given Encoder:
Given X, , find X, such that D(X,X) is minimized

L Xk 11 A A
Minimize D(X,X) = Zj (x=%)2f, 00X wrt X,
k=1 °




Lloyd-Max Quantizer

+ Unfortunately, we need X, to solve for x,

and x, to solve for x, !

£ . Main idea [Lloyd 1957] [Max 1960]

= solving these 2 equation iteratively until D converges

_ Input Codebook Nearest Ceriiaidl Updated Codebook
C " Neighbor [— Computation C =

' Partitioning P T

L index of m-th iteration

o Assumptions
ﬁ = Input PDF is known and stationary

% = Entropy has not been taken into account



| E;nbedded Quantization |

X

A
v

S | MSB ooo LSB Fl 2

A

y Discard N integer bit planes
+ all fractional bit planes

+ Also called bit-plane quantization, progressive quantization
o Most significant information 1s transmitted first

+ JPEG2000 quantization strategy




Embedded Forward Quantization

Bounded input : x € (~16,16)
N = 2 least significant bit planes discarded

y 1

A=2"

| L @— | O . @ @@ >
—16 ‘—12 -8 .4 4---8 + 42y 16 X
Dead Zone

Embedded Quantizer, N=2



Embedded Inverse Quantization

| | | |

0 X 0 0

| X X |

| X X X

0 X X X
Original Truncate Receive 1 Receive 2
symbol 4 bit planes refinement bit  refinement bits
X =22 Range=[16,32) Range=[16,24) Range=[20, 24)

X =24 X =20 X =22
=24—-4 =20+ 2

+ N-bit-plane truncation = scalar quantization with A =2"



Vector Quantization

+ N-dimensional generalization of scalar quantizer

o Q: R'> C\
n-dimensional  codebook, containing
ﬁ input vectors code-vectors or codewords

+ Nearest neighbor and centroid rule still apply

A
X2

R* R

OO CACA Y
Q‘§® ® | ® | ® |Separable

Vector Q Scalar Q




Summary

IE

¢ Introduction to image/video signals
= Visual information is everywhere in our everyday life

= Efficient representation (compression) of image/video facilitates
visual information storage, archival, communications and even
processing

= Compression 1s achievable since visual data contains a lot of
redundancy, both spatially and temporally

¢ Variable-length coding

= Has its roots from information theory

= Provides effective lossless coding capability

L * Huffman coding & arithmetic coding achieve bit rates close to
@ entropy — the lowest achievable bit rate

+ Quantization

ﬁ = Allows lossy signal coding and provides trade-off between bit rate
% - and reconstruction quality



