Image Coding, JPEG, and JPEG2000

金酒都怎么会通都怎么会道都怎么

The Johns Hopkins University Baltimore MD 21218

Outline

- Prediction
 - Open-loop differential pulse-code modulation (DPCM)
 - Closed-loop DPCM
 - Optimal linear prediction
- Transformation
 - Transform fundamentals
 - Karhunen-Loeve Transform (KLT): optimal linear transform
 - Discrete Cosine Transform (DCT)
- Putting everything together
 - JPEG: DCT Quantization Run-length Huffman
- Latest development
 - JPEG2000 and scalable, progressive coding

Predictive Coding

• We have only dealt with memory-less model so far

- Each symbol/sample is quantized and/or coded without much knowledge on previous ones
- There is usually a strong correlation between neighboring symbols/samples in multimedia signals
- Simplest prediction scheme: take the difference!
- If the difference between two adjacent symbols/samples is quantized and encoded instead, we can achieve the same level of compression performance using fewer bits – the range of the differences should be a lot smaller.

Open-Loop DPCM: Analysis

There seems to be a model mismatch

• Encoder: d[n] = x[n] - x[n-1]• Decoder: $\hat{x}[n] = \hat{d}[n] + \hat{x}[n-1]$ $\Rightarrow \hat{d}[n] = \hat{x}[n] - \hat{x}[n-1]$

How about using the reconstructed sample for the difference? $d[n] = x[n] - \hat{x}[n-1]$

Closed-Loop DPCM: Observations

- Quantization error does not accumulate
- Minor modification in prediction scheme leads to major encoder modification
 - Encoder now has decoder embedded inside
- Closed-loop & open-loop DPCM has the same decoder
- DPCM predicts current sample from last reconstructed one
- Generalization?
 - Replace the simple delay operator by more complicated & more sophisticated predictor P(z)

Optimal Linear Prediction

Problem

Find
$$\{a_i\}$$
 s.t. $D = \sigma_d^2 = E \left| \left(x[n] - \sum_{i=1}^N a_i \hat{x}[n-i] \right)^2 \right|$ is minimized

- Assumptions
 - Signal is WSS $R_{xx}(k) = E[x[n]x[n+k]]$
 - High bit rates, i.e., fine quantization

$$p[n] = \sum_{i=1}^{N} a_i \hat{x}[n-i] \approx \sum_{i=1}^{N} a_i x[n-i]$$

 $\frac{\delta}{\delta a_i} D = 0$

Optimal Linear Prediction

$$\frac{\delta}{\delta a_i} D = \frac{\delta}{\delta a_i} E\left[\left(x[n] - \sum_{i=1}^N a_i \hat{x}[n-i]\right)^2\right] = 0$$

a. Ho

A.

$$\frac{\delta}{\delta a_1} D = -2E \left[\left(x[n] - \sum_{i=1}^N a_i \hat{x}[n-i] \right) x[n-1] \right] = 0$$

$$\frac{\delta}{\delta a_2} D = -2E \left[\left(x[n] - \sum_{i=1}^N a_i \hat{x}[n-i] \right) x[n-2] \right] = 0$$

$$\frac{\delta}{\delta a_N} D = -2E\left[\left(x[n] - \sum_{i=1}^N a_i \hat{x}[n-i]\right)x[n-N]\right] = 0$$

Optimal Linear Prediction

N

N

P P

$$E[x[n]x[n-1]] = \sum_{i=1}^{N} a_i E[x[n-i]x[n-1]] \implies R_{xx}(1) = \sum_{i=1}^{N} a_i R_{xx}(i-1)$$

$$E[x[n]x[n-2]] = \sum_{i=1}^{N} a_i E[x[n-i]x[n-2]] \implies R_{xx}(2) = \sum_{i=1}^{N} a_i R_{xx}(i-2)$$

$$\vdots$$

$$E[x[n]x[n-N]] = \sum_{i=1}^{N} a_i E[x[n-i]x[n-N]] \implies R_{xx}(N) = \sum_{i=1}^{N} a_i R_{xx}(i-N)$$

Invertibility & Unitary Invertibility perfect reconstruction, bi-orthogonal, reversible $T_{S} = T_{A}^{-1} \Longrightarrow T_{S}T_{A} = T_{A}T_{S} = I$ $\left\langle \mathbf{\Phi}_{i}, \hat{\mathbf{\Phi}}_{j} \right\rangle = \delta[i-j]$ Unitary orthogonal, orthonormal

$$\Gamma_{\rm S} = \Gamma_{\rm A}^{-1} = \Gamma_{\rm A}^{\rm T} \Longrightarrow \Gamma_{\rm A}^{\rm T} \Gamma_{\rm A} = \Gamma_{\rm A} \Gamma_{\rm A}^{\rm T} = I$$
$$\left\langle \Phi_{\rm i}, \Phi_{\rm j} \right\rangle = \delta[i - j]$$

same analysis & synthesis basis functions

Norm Preservation

Norm preservation property of orthonormal transform

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{2} = \|\mathbf{x} - \hat{\mathbf{x}}\|_{2}$$
?

- Q error in the transform domain equals Q error in the spatial domain!
- Concentrate on the quantization of the transform coefficients

Example Discrete Fourier Transform (DFT) $F[k] = \sum_{n=0}^{N-1} f[n] W_N^{nk}$ $f[n] = \frac{1}{N} \sum_{k=0}^{N-1} F[k] W_N^{-nk}$ $n, k \in \{0, 1, \dots, N-1\}$ $W_N \equiv e^{-j\frac{2\pi}{N}}$ $\mathbf{T}_{\mathbf{A}} = \left\{ W_{N}^{nk} \right\} \qquad N = 4 \qquad \mathbf{T}_{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$ $\mathbf{T}_{\mathbf{S}} = \frac{1}{N} \mathbf{T}_{\mathbf{A}}^{\mathbf{H}} \qquad \qquad \mathbf{K}_{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$

KLT: Optimal Linear Transform

- Karhunen-Loeve Transform (KLT)
 - Hotelling transform, principle component analysis (PCA)
 - Question:
 - Amongst the linear transforms, which one is the best decorrelator, offering the best "compression"?
- Problem:

Given an *N* - point signal **x**. Find the set of orthonormal basis functions $\{\Phi_i\}, i \in \{0, 1, ..., N-1\}$, such that the MSE between the *L* - point truncated representation $\hat{\mathbf{x}} = \sum_{i=0}^{L-1} y_i \Phi_i$ (L < N) and the original signal **x** is minimized.

Assumptions: x is zero-mean WSS RP.

KLT

- Reminder:
 - Orthonormal constraint: $\langle \Phi_i, \Phi_j \rangle = \Phi_i^T \Phi_j = \delta[i-j]$
 - Autocorrelation matrix
 - $\mathbf{R}_{xx} = E[\mathbf{x}\mathbf{x}^{T}] = \begin{bmatrix} R_{xx}(0) & R_{xx}(1) & \cdots & R_{xx}(N-1) \\ R_{xx}(1) & R_{xx}(0) & R_{xx}(N-2) \\ \vdots & \vdots & \ddots & \vdots \\ R_{xx}(N-1) & R_{xx}(N-2) & \cdots & R_{xx}(0) \end{bmatrix}$

 $y_i = \langle \mathbf{\Phi}_i, \mathbf{x} \rangle = \mathbf{\Phi}_i^{\mathrm{T}} \mathbf{x} = \mathbf{x}^{\mathrm{T}} \mathbf{\Phi}_i$

KLT

eigenvalue

 $\frac{\delta}{\delta \mathbf{v}} \left[\mathbf{u}^{\mathrm{T}} \mathbf{v} \right] = \mathbf{u}$

- $\mathbf{R}_{\mathbf{x}\mathbf{x}}\mathbf{e} = \lambda \mathbf{e}$ • Reminder: eigenvector -
 - $\frac{\delta}{\delta \mathbf{v}} \left[\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \right] = 2 \mathbf{A} \mathbf{v}$ Minimize $MSE = \sum_{i=L}^{N-1} \boldsymbol{\Phi}_{i}^{T} E \left[\mathbf{x} \mathbf{x}^{T} \right] \boldsymbol{\Phi}_{i} = \sum_{i=L}^{N-1} \boldsymbol{\Phi}_{i}^{T} \mathbf{R}_{\mathbf{x}\mathbf{x}} \boldsymbol{\Phi}_{i}$ wrt $\langle \boldsymbol{\Phi}_{i}, \boldsymbol{\Phi}_{j} \rangle = \delta[i-j]$
 - Lagrange Multiplier

$$\frac{\delta}{\delta \Phi_{i}} \left[\sum_{i=L}^{N-1} \Phi_{i}^{T} \mathbf{R}_{xx} \Phi_{i} - \lambda_{i} \left(\left\langle \Phi_{i}, \Phi_{j} \right\rangle - 1 \right) \right] = 0$$

$$\frac{\delta}{\delta \Phi_{i}} \left[\Phi_{i}^{T} \mathbf{R}_{xx} \Phi_{i} - \lambda_{i} \left(\left\langle \Phi_{i}, \Phi_{i} \right\rangle - 1 \right) \right] = 0$$

$$2 \mathbf{R}_{xx} \Phi_{i} - 2\lambda_{i} \Phi_{i} = 0 \Longrightarrow \mathbf{R}_{xx} \Phi_{i} = \lambda_{i} \Phi_{i} \qquad \Rightarrow MSE = \sum_{i=L}^{N-1} \lambda_{i}$$

Optimal coding scheme: send the larger eigenvalues first!

KLT Problems

- KLT problems
 - Signal dependent
 - Computationally expensive
 - statistics need to be computed
 - no structure, no symmetry, no guarantee of stability
 - Real signals are really stationary
 - Encoder/Decoder communication
- Practical solutions
 - Assume a reasonable signal model
 - Blocking the signals to ensure stationary assumption holds
 - Making the transform matrix sparse & symmetric
 - Good KLT approximation for smooth signals: DCT!

- Signal dependent
- Require stationary signals
- How do we communicate bases to the decoder?
- How do we design "good" signal-independent transform?

Best Basis Revisited

• Fundamental question: what is the best basis?

- energy compaction: minimize a pre-defined error measure, say MSE, given L coefficients
- maximize perceptual reconstruction quality
- low complexity: fast-computable decomposition and reconstruction
- intuitive interpretation
- How to construct such a basis? Different viewpoints!
- Applications
 - compression, coding
 - signal analysis
 - de-noising, enhancement
 - communications

Discrete Cosine Transforms

• Type I

$$\begin{bmatrix} C^{I} \end{bmatrix} = \sqrt{\frac{2}{M}} \begin{bmatrix} K_{m}K_{n} \cos\left(\frac{mn\pi}{M}\right) \end{bmatrix}, \quad m, n \in \{0, 1, \dots, M\}$$

$$K_{i} = \begin{cases} 1/\sqrt{2}, & l = 0, M \\ 1, & \text{otherwise} \end{cases}$$

(1/5)

0 1/

$$\left[C^{II}\right] = \sqrt{\frac{2}{M}} \left[K_m \cos\left(\frac{m(n+1/2)\pi}{M}\right)\right], \quad m, n \in \{0, 1, \dots, M-1\}$$

• Type III

$$\begin{bmatrix} C^{III} \end{bmatrix} = \sqrt{\frac{2}{M}} \begin{bmatrix} K_n \cos\left(\frac{(m+1/2)n\pi}{M}\right) \end{bmatrix}, \quad m, n \in \{0, 1, \dots, M-1\}$$
• Type IV

 $\left[C^{IV}\right] = \sqrt{\frac{2}{M}} \left[\cos\left(\frac{(m+1/2)(n+1/2)\pi}{M}\right) \right], \quad m, n \in \{0, 1, \dots, M-1\}$

DCT Symmetry

 $\cos\left(\frac{m(2(M-1-n)+1)\pi}{2M}\right)$ $=\cos\left(\frac{(2M-2-2n+1)m\pi}{2M}\right)$ $= \cos \left[\frac{2Mm\pi}{2M} - \frac{(2n+1)m\pi}{2M} \right]$ $=\pm\cos\left[\frac{(2n+1)m\pi}{2M}\right]$

DCT basis functions are either symmetric or anti-symmetric

DCT: Recursive Property

An M-point DCT–II can be implemented via an M/2-point DCT–II and an M/2-point DCT–IV

each of size M

JPEG Still Image Coding Standard 金箔教教会 金箔教教会 金箔教教会

Trac D. Tran ECE Department

The Johns Hopkins University Baltimore MD 21218

JPEG Quantization

- Uniform mid-tread quantizer
- Larger step sizes for chroma components
- Different coefficients have different step sizes
 - Smaller steps for low frequency coefficients (more bits)
 - Larger steps for high frequency coefficients (less bits)
 - Human visual system is not sensitive to error in high frequency
- Luma Quantization Table

 Chroma Quantization Table 	e
---	---

16	11	10	16	24	40	51	51
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Actual step size: Scale the basic table by a quality factor
Scaling of Quantization Table

- quality factor \leq 50: scaling = 50/quality
- quality factor > 50: scaling = 2 quality/50

16	11	10	16	24	40	51	51
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Quality Factor	Scaling
10	5.0
20	2.5
50	1.0
75	0.5

DC Prediction

- DC Coefficients: average of a block
- DC of neighboring blocks are still similar to each others: redundancy
- The redundancy can be removed by differential coding:

$$e(n) = DC(n) - DC(n-1)$$

Only encode the prediction error e(n)

DC coeffs of Lena

Coefficient Category

- Divide coefficients into categories of exponentially increased sizes
- Use Huffman code to encode category ID
- Use fixed length code within each category
- Similar to Exponential Golomb code

Ranges	Range Size	DC Cat. ID	AC Cat. ID
0	1	0	N/A
-1, 1	2	1	1
-3, -2, 2, 3	4	2	2
-7, -6, -5, -4, 4, 5, 6, 7	8	3	3
-15,, -8, 8,, 15	16	4	4
-31,, -16, 16,, 31	32	5	5
-63,, -32, 32,, 63	64	6	6
· · · · · ·			
[-32767, -16384], [16384, 32767]	32768	15	15

Coding of DC Coefficients

• Encode e(n) = DC(n) - DC(n-1)

DC Cat.	Prediction Errors	Base Codeword
0	0	010
1	-1, 1	011
2	-3, -2, 2, 3	100
3	-7, -6, -5, -4, 4, 5, 6, 7	00
4	-15,, -8, 8,, 15	101
5	-31,, -16, 16,, 31	110
6	-63,, -32, 32,, 63	1110

Our example:

DC: 8. Assume last DC: 5

Cat.: 2, index 3

→ e = 8 - 5 = 3.
→ Bitstream: 10011

Coding of AC Coefficients

Most non-zero coefficients are in the upper-left corner

Zigzag scanning

٠	Exa	mpl	e				
8	24	-2	0	0	0	0	0
-31	-4	6	-1	0	0	0	0
0	-12	-1	2	0	0	0	0
0	0	-2	-1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Coding of AC Coefficients

- Many AC coefficients are zeros:
 - Huffman coding is not efficient for symbol with prob. > 1/2
- Run-level coding: Jointly encode a non-zero coefficient and the number of zeros before it (run of zeros): (run, level) event
 - Disadvantage: Symbol set is enlarged: #Run x #Level
 - Tradeoff:
 - Run: encode up to 15 zeros. Apply escape coding for greater values.
 - Level: Divide level into 16 categories, as in DC.
 - Apply Huffman coding to the joint Run / Category event:
 - Max symbol set size: 16 x 16 = 256.
 - Followed by fixed length code to signal the level index within each category
 - Example: zigzag scanning result
 24 -31 0 -4 -2 0 6 -12 0 0 0 -1 -1 0 0 0 2 -2 0 0 0 0 0 -1 EOB
 - (Run, level) representation:
 - (0, 24), (0, -31), (1, -4), (0, -2), (1, 6), (0, -12), (3, -1), (0, -1),
 - (3, 2), (0, -2), (5, -1), EOB

Coding of AC Coefficients

	Run / Cat.	Base codeword	Run / Cat.	Base Codeword		Run / Cat.	Base codeword
9	EOB	1010	-	-		ZRL	1111 1111 001
4	0/1	00	1/1	1100		15/1	1111 1111 1111 0101
	0/2	01	1/2	11011		15/2	1111 1111 1111 0110
	0/3	100	1/3	1111001		15/3	1111 1111 1111 0111
	0/4	1011	1/4	111110110		15/4	1111 1111 1111 1000
	0/5	11010	1/5	11111110110		15/5	1111 1111 1111 1001
		•••			/		

- **CRL**: represent 16 zeros when number of zeros exceeds 15.
 - Example: 20 zeros followed by -1: (ZRL), (4, -1).

- (Run, Level) sequence: (0, 24), (0, -31), (1, -4),
- Run/Cat. Sequence: 0/5, 0/5, 1/3, ...

24 is the 24-th entry in Category 5 \rightarrow (0, 24): 11010 11000

-4 is the 3-th entry in Category 3 \rightarrow (1, -4): 1111001 <u>011</u>

A Complete Example

37.7

2-D DCT

Original data:

124 125 122 120 122 119 117 118 39.8 6.5 -2.2 1.2 -0.3 -1.0 121 121 120 119 119 120 120 118 -102.4 4.5 2.2 126 124 123 122 121 121 120 120 124 124 125 125 126 125 124 124 -5.6 127 127 128 129 130 128 127 125 -3.3 143 142 143 142 140 139 139 139 5.9 150 148 152 152 152 152 150 151 3.9 156 159 158 155 158 158 157 156 -3.4

Q	uant	izeo	d by	' bas	sic t	able	9
2	1	0	0	0	0	0	0
-9	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0 0 0 0 0 0

0

0

Q table:
16 11
12
14

floor(39.8/16 + 0.5) = 2floor(6.5/11 + 0.5) = 1-floor(102.4/12 + 0.5) = -9floor(37.7/14 + 0.5) = 3

1.1 0.3 -0.6 -1.0

-1.5 -2.2

-0.7 1.9 -0.2 1.4

-0.8

-0.8 1.4 0.2

-1.7 0.7 -0.6 -2.6 -1.3

-0.1

0.7

-0.1

-0.1

-0.5

0.3

1.1

-0.4

0.2

0.1

0.7

0.0

-0.1

0.0

 Zigzag scanning 2 1 -9 3 EOB

1.7

-0.4

2.3

0.2

-0.5

0.5 -1.0 0.8 0.9 0.0

1.3

-0.7

-0.1

5.5

2.2 -1.3

A Complete Example

Zigzag scanning 2 1 -9 3 EOB

• Ir	iver	se Ç)uar	ntiza	atio	n	
32	11	0	0	0	0	0	0
-108	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Reconstructed block

110
117
117
120
127
138
149
156

• MSE: 5.67

Progressive JPEG

Baseline JPEG encodes the image block by block:

- Decoder has to wait till the end to decode and display the entire image
- Progressive: Coding DCT coefficients in multiple scans
 - The first scan generates a low-quality version of the entire image
 - Subsequent scans refine the entire image gradually.
- Two procedures defined in JPEG:
 - Spectral selection:
 - Divide all DCT coefficients into several bands (low, middle, high frequency subbands...)
 - Bands are coded into separate scans
 - Successive approximation:
 - Send MSB of all coefficients first
 - Send lower significant bits in subsequent scans

Trac D. Tran ECE Department

The Johns Hopkins University Baltimore MD 21218

Fundamentals

- Scalability coding: capability of recovering physically meaningful signal information by decoding only partial compressed bit-stream
- Scalable coding generates a single coded representation (bit-stream) in a manner that facilitates the derivation of signal of many different resolutions and qualities at the decoder
- Embedded or progressive bit-stream: a bit stream that can be truncated at any point and the decoded signal is the same as if the signal has been originally encoded at that rate
- Embeddedness is the extreme of scalability, sometimes labeled fine-granularity scalability

Goals and Approaches

Simulcast coding

- Encode the same signal several times, each with a different quality setting
- Each of the generated bit-stream is non-scalable
- Advantage: simple, efficient for each particular setting
- Disadvantage: inefficient overall
- Design goal in scalable coding
 - Realizing requirement for scalability
 - Minimizing the reduction in coding efficiency
 - Approach
 - Coarse-granularity scalability: only have a few layers, usually two to three only
 - Fine-granularity scalability: many layers, offer more decoding options and precise bit-rate control

Scalability Classification

- Quality or SNR scalability
 - Represent signal with many layers, each at a different quality level or at different accuracy
- Spatial scalability
 - More than one layer and they can usually have different spatial resolution
- Temporal scalability
 - More than one layer & each can have different temporal resolution (frame rate)
- Frequency scalability or data partitioning
 - Single-coded bit-stream is artificially partitioned into layers, each contains different frequency content
- Hybrid scalability
 - Combination of two or more types of scalability above

Scalable Applications

- Quality/SNR scalability
 - Digital broadcast TV or HDTV with different quality layers
 - Multi-quality video-on-demand services
 - Error-resilient video over ATM and other networks
- Spatial scalability
 - Inter-working between two different video standards
 - Layered digital TV broadcast
 - Video on LAN and computer networks
 - Error-resilient video over lossy channels
- Temporal scalability
 - Migration from low to high temporal resolution
 - Networked video. Error resilience
 - Multi-quality video-on-demand services based on decoder capability as well as communication bit-rate
- Frequency scalability
 - Error resilience

Wavelet Zero-Tree

- Main observation: there is self-similarity between wavelet coefficients across different scales
- If a parent is insignificant with respect to a threshold T, i.e. |C| < T, then so are its children

parent : $c_{i,j}$ children : $\{c_{2i,2j}, c_{2i+1,2j}, c_{2i,2j+1}, c_{2i+1,2j+1}\}$

EZW Coding

• Embedded zero-tree wavelet coding [Shapiro 1993]

- Wavelet transform for image de-correlation
- Exploitation of self-similarity of wavelet coefficients across different scales to predict the location of significant information
- Further compression with adaptive arithmetic coding

Main features

- Bit-plane coding
- One sorting pass and one refinement pass per bit plane with a pre-defined scan pattern
- Use four symbols to classify wavelet coefficients
 - POS: positive significant
 - NEG: negative significant
 - ZTR: zero-tree root; parent and all children are insignificant
 - IZ: isolated insignificant; parent is insignificant but at least one of the children is significant

Toy Example

ts	- /		-	No. 1	
cien	18	3	2	2	
beffi	6	-5	1	-2	
et co	8	13	-6	4	
avel	-7	1	3	-2	
N					

- Rank coefficients by magnitude
- Transmit coefficients bit plane by bit plane: 0 010 10011100
- Problem: how do we transmit the rank order to the decoder?

EZW Basic Algorithm

- Set initial threshold: $T = 2^{\lfloor \log_2 |\max| \rfloor}$
- Sorting Pass Dominant Pass
 - scan coefficients from top left corner
 - parent nodes are always scanned before children
 - For each coefficient, output a symbol among {POS, NEG, ZTR, IZ} depending on the threshold *T*
- Refinement Pass Subordinate Pass
 - refine the accuracy of each significant coefficient by sending one additional bit of its binary representation
- Reduce the threshold by a factor of 2: $T = \frac{1}{2}T$ and repeat Step 2

EZW Example: First Bit Plane

POS =11 NEG =10 IZ =01 ZTR =00

T=16

- Dominant Pass 1
 - POS ZTR ZTR ZTR
 - Subordinate list = {18}
- Subordinate Pass 1
 - No symbols because subordinate step *i* works on significant coefficients from dominant step *i-1* and earlier

Compressed bit-stream 11 00 00 00 – 8 bits

EZW Example: 2nd Bit Plane

3 2 2 * -5 1 -2 6 13 8 -6 4 3 -7 1 -2

POS =11 NEG =10 IZ =01 ZTR =00

T=8

- Dominant Pass 2
 - ZTR IZ ZTR POS POS IZ IZ
 - Subordinate list = {18 8 13}
- Subordinate Pass 2
 - Send the bit plane of coefficients involved in Dominant Pass 1

Compressed bit-stream 00 01 00 11 11 01 01 – 14 bits

0 – 1 bit

EZW Example: 3rd Bit Plane

POS =11 NEG =10 IZ =01 ZTR =00

Compressed bit-stream

001 - 3 bits

- ZTR POS NEG NEG IZ NEG POS IZ IZ
- Subordinate list = {18,8,13,6,-5,-7,-6,4}
- Subordinate Pass 3

- 00 11 10 10 01 10 11 01 01 18 bits
- Send the bit plane of coefficients involved in Dominant Pass 2

E.

4

EZW Decoding

- The decoder needs
 - Initial threshold T (or the max absolute value of all coefficients)
 - Original image size
 - Number of wavelet decomposition levels
 - Encoded bit-stream
- Decoding process
 - Decode the arithmetic-encoded bit-stream into a stream of symbols
 - Based on the side information, create data structures of appropriate sizes
 - Traverse the encoding algorithm

Other Approaches

- Idea can be generalized to other different data structures
- For example, quad-tree
- Sorting Pass 1
 - 10001000
- Refinement Pass 1: nothing
 - Sorting Pass 2
 - 00101100
- Refinement Pass 2
 - Like EZW, 1 bit for 18
- Sorting Pass 3
 - 1011011101100
- Refinement Pass 3
 - Like EZW, 3 bits for 18 8 13

18	3	2	2
6	-5	1	-2
8	13	-6	4
-7	1	3 -	2

0	3	2	2
6	-5	1	-2
0	0	-6	4
-7	1	3	-2

0	3	2	2
6	-5	1	-2
8	13	-6	4
-7	1	3	-2

JPEG2000 Image Coding

- About JPEG2000 (ISO/IEC15444)
- Objectives of JPEG2000
 - To provide new functionalities and features that current standards fail to support
 - To support advanced applications in the new millennium
 - To extend the applicability of image coding in more applications
 - To allow imaging applications to be interactive and adaptive

JPEG2000 vs. JPEG

Key Advantages

- Wavelet based better rate-distortion performance
- Scalable by resolution, quality, color channel, location in image
- Lossless encoding, including lossy to lossless scalability
- Error resilience
- Region-of-Interest coding and progressive decoding

Compression ratio: 100:1

http://www.aware.com/products/compression/demos/lena_compare.html

JPEG2000 Flexible Decoding

Encoder choices: tiling, lossy/lossless + other choices

→ Bit stream

Decoder choices:

image resolution, image fidelity, region-of-interest, fixed-rate, components

JPEG 2000 offers flexible decoding

Part 1: Discrete Wavelet Transform

- Inherent to normal DWT:
 - Multi-resolution image representation
 - Eliminate blocking artifacts at high compression ratio
 - Each subband can be quantized differently
- Special techniques:
 - Provide integer filter (e.g. (5,3) filter) to support lossless and lossy compression within a single compressed bit-stream;
 - Line-based DWT and lifting implementations to reduce the memory requirement and computational complexity.

Except for a few special case, e.g., the (5,3) integer filter, the DWT is generally more computationally complexity (~2 to 3) than the block-based DCT; and DWT also requires more memory than DCT.

Line-based DWT Implementation

- There is no need to buffer an entire image in order to perform wavelet transform
- Depending on filter lengths and decomposition levels, a line of wavelet coefficients can be made available only after processing a few lines of the input image

Part 2: Quantization

Embedded Quantization

Quantization index is encoded bit by bit, starting from Most Significant Bit (MSB) to Least Significant Bit (LSB)

Example

Wavelet coefficient = 209

Quantizer step size

$$\Delta_h = 2$$

Quantization index = = 01101000;

 $ex = \lfloor 209/2 \rfloor = 104$

Dequantized value based on fully decoded index: (104+0.5)*2 = 209;

Decoding value after decoding 3 bit planes:

•Decoded index =
$$011 = 3$$
;

•Step size = 2*32=64

•Dequantized value = (3+0.5)*64 = 224

Part 3: Entropy Coding (Tier-1)

- Each bit-plane is individually coded by the context-based adaptive binary arithmetic coding (JBIG2 MQ-coder)
- Each bit plane is partitioned into blocks, named *code-blocks*, which are encoded independently
- Each bit plane of each block is encoded in three *sub-bit-plane passes*
 - Significance propagation pass
 - Magnitude refinement pass
 - Clean-up pass

Part 4: Bit stream Organization (Tier 2)

- Tier-1 generates a collection of bitstreams
 - One independent bitstream from each code block
 - Each bitstream is embedded
- Tier-2 multiplexes the bitstreams for inclusion in the codestream and signals the ordering of the resulting coded bitplane passes in an efficient manner.
- Tier-2 coded data can be rather easily parsed
- Tier-2 enables SNR, resolution, spatial, ROI and arbitrary progression and scalability

JPEG2000 Summary

JPEG2000 offers the state-of-the-art features

- Superior low bit rate performance and coding efficiency (up to 30% compared with DCT)
- Lossless and lossy compression
- Progressive transmission by pixel accuracy and resolution
- Region-of-Interest coding
- Random codestream access and processing
- Error resilience
- Open architecture
- Content-based description
- Side channel spatial information (transparency)
- Protective image security
- Continuous-tone and bi-level compression

Summary

- Prediction
 - DPCM, generalized to linear prediction
- Transformation
 - Transform fundamentals
 - Karhunen-Loeve Transform (KLT): optimal linear transform
 - Discrete Cosine Transform (DCT): properties
 - Discrete Wavelet Transform (DWT): multi-resolution representation
- JPEG: first international compression standard for still images
 - DCT Quantization Run-length Huffman
- JPEG2000: latest technology, wavelet-based
 - Scalable, progressive coding with flexible intelligent functionalities