
DAY 2 

Saturday, July 22rd, 2006 

 
I. Lecture: (total 54 slides) 

I.1. Modulation and Polyphase Representations: (25/27 slides) 

1. Noble Identities 

2. Block Toeplitz Matrices and Block z-transforms 

3. Polyphase Examples 

I.2. Orthogonal Wavelet Bases: (18/18 slides) 

1. Connection to Orthogonal Filters 

2. Orthogonality in the Frequency Domain 

3. Biorthogonal Wavelet Bases  

I.3. Maxflat Filters: (11/18 slides) 

1. Daubechies and Meyer Formulas 

2. Spectral Factorization 

Link: 

� http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-Banks-
and-ApplicationsSpring2003/3019274A-2431-4C96-8FD6-
BC96B330AA52/0/Slides5.pdf  

� http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-Banks-
and-ApplicationsSpring2003/16E2D430-C01C-49BF-981F-
0ED675817545/0/Slides7.pdf  

� http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-Banks-
and-ApplicationsSpring2003/9B97D14A-5F49-4F2E-85B0-
47B51339D941/0/Slides8.pdf   

II. Exercise and Lab: 

II.1. Exercise:  

1. Problem Set 3.4:  

Problems 3: Simplify the following system: 

 

 

 

)(nx  

4−z  2↓  3↑  2↓  
)(ny  



What is )(zY  in term of )(zX ? Find )(ny  for the following inputs: )()( nnx δ= , 

...),1,1,1,1(...,)( =nx , ...),1,1,1,1(...,)( −−=nx . 

2. Problem Set 4.2:  

Problems 1: Find )(zX even  and )(zX odd  when 10521)( −− ++= zzzX . Verify that 
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zX odd −−= . The odd 

definition involves an advance!. 

Problem 4: Polyphase Representation of an IIR Transfer function 

Let 
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1
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zH  where 10 << a . Its impulse response is nanh =)(  for 0≥n  

(and zero for negative n ). The phases are ...),,,1()( 42 aanheven =  and 

...),,,()( 53 aaanhodd = . The z -transform are 
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a
nHodd . This method is very cumbersome. One has to find the 

impulse response )(nh , then its even and odd parts )(nheven  and )(nhodd , then the 

z -transform. 

An alternative method is to write 
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1
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zH directly as 

)()()( 212 zHzzHzH oddeven
−+= . The dominator must be a function of 2z . So 

multiply above and below by 11 −+ az : 
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This displays )(zH even  and )(zHodd . An thN  order filter can be factored as a 

cascade of first-order sections, and this method applies to each section. 

(a). Let 
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zH . Factor )(zH  into two first-order poles. Find 

the polyphase components of )(zH . 
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zH . What are this polyphase components? 

Problem 7: Let 7654321 2344321)( −−−−−−− +++++++= zzzzzzzzH . Find the 

polyphase components )(zH even  and )(zHodd  for antisymmetric filters of even 

length and symmetric filters of odd length? 

 



3. Problem Set 4.3:  

Problem 2: If IzHzH m
T
m 2)()( 1 =− show from 
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Problem 17: Find the analysis filters )(0 zH  and )(1 zH  for the following matrices: 
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4. Problem Set 4.4:  

Problem 9: Find the matrices )(zH p  and )(zFp . Is the system PR? 

 

 

 

 

 

5. Problem Set 5.2:  

Problem 2: For any four coefficients )3(),...,0( hh , verify that  

( )2222
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)()( zHzHzHzH oddeven −+=+  

Then condition O for the polyphase equals Condition O for modulation. 

Problem 4: Find d  by alternating flip of ))5(),...,0(( ccc = . Verify equation 

0)2()( =−∑ kndnc  directly to show that c is double-shift orthogonal to d . 

6. Problem Set 5.4: 

Problem 3: Why must all roots of )(zP  on the unit circle have even multiplicity, 

to allow )()()( 1−= zCzCzP  and 
2

)()( ωω CP = ? 
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II.2. Matlab:  

1. Magnitude and Phase response of Daubechies 4 -tap filter: use the cepstral 
method to write a function =0h daub( Nh ) to find the Daubechies analysis filter 

)(0 nh  with length Nh : 
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� Determine the M point DFT of )(kQ . Use the equation: 
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Where 2/Nhp = ,  Nkjez /2π= , 512=N  FFT point, Nk ,...,1,0=  

Type:  

K = Nh/2; 

L = Nh/2; 

N = 512;    % Use a 512 point FFT by default. 

k = 0:N-1; 

z = exp(j*2*pi*k/N); 

tmp1 = (1 + z.^(-1)) / 2; 

tmp2 = (-z + 2 - z.^(-1)) / 4;  % sin^2(w/2) 

Mz1 = zeros(1,N); 

vec = ones(1,N); 

for l = 0:K-1 

  Mz1 = Mz1 + vec; 

  vec = vec .* tmp2 * (L + l) / (l + 1);  

end 

Mz1 = 2 * Mz1; 

� Find the specstral of )(kQ  by using equation  )))((ln()(
^

kQiDFTnq = . 

� Find the causal part of )(
^

nq . 
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� Determine the DFT of )(nr  by equation ))((
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� Including half the zeros at 1−=z to get 
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0 1)()(  where 

2/Nhp = . 

� Find ))(()( 00 zHiDFTnh = . 

� Find and plot the zero and pole of )(kP . 

2. Develop a Matlab program to compute the spectral factors of a symmetric, 
positive definite filter: write function specfact.m with syntax [H0, H1] = specfact( p ), 
where p is the order of the filter to compute the low and highpass orthogonal filters 

with p  zeros at π by computing the roots of the product filter of degree 24 −p . 

� Use prodfilt.m to compute )(0 zP , )(zB  and )(zQ . 

� Compute the roots r of )(zQ  and the roots within the unit circle 0r . 

� Compute polynomial with roots 0r . 

� Find binomial term with p  zeros at π. 

� Compute and normalize the lowpass filter and compute the highpass filter. 

Link: http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-
Banks-and-ApplicationsSpring2003/A318B5E6-442F-4EE0-B4B1-
FD624C05B8ED/0/pset2.pdf  
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