Course 18.327 and 1.130
Wavelets and Filter Banks

Sampling rate change operations:
upsampling and downsampling;
fractional sampling; interpolation




Downsampling
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As a matrix operation:




Upsampling

Definition:
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As a matrix operation:
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Downsampling
Downsampling by 2
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Downsampling by M
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Upsampling
Upsampling by 2
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Upsampling by L
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Downsampling
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Upsampling
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Interpolation
Use lowpass filter after upsampling

X[”]> N ufn] |

y[n]
>

H(w)

X(w)




Fractional Sampling
Consider

X[”]> N ufn] |

M-
Y(w) = ms

+ 2pk
U ()
M-1
= A X (k)

What about

x[n]

Y(w) = D(wL)
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ﬁ gl. X (WLI\-/ll- 2pk )




Matlab Example 1

Basic filters, upsampling and
downsampling.




Lowpass filter

Frequency response of Haar lowpass filter: [1/2 1/2]
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Highpass filter

Frequency response of Haar highpass filter [1/2 -1/2]

Fourier transform magnitude
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Linear interpolating lowpass
filter

Frequency response of lowpass filter [1/2 1 1/2]
I I I I I

Fourier transform magnitude
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Upsampling

Fourier transform of [1/2 0 1/2 0]
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Downsampling

Fourier transform of x=[-1091690-1]/16
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Downsampling

Fourier transform of [-1 99 -1] /16
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Downsampling

[X(w/2) + X(w/2+m)}/2
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Course 18.327 and 1.130
Wavelets and Filter Banks

Filter Banks: time domain
(Haar example) and frequency domain;

conditions for alias cancellation
and no distortion




Haar Filter Bank

Simplest (non-trivial) example of a two channel FIR
perfect reconstruction filter bank.
roln] = t.[N] Vo[n]
holNI—=>— 2 > yo[n] >~ 2 —=—|fo[n] A
x[n] . _ X[n]
> Analysis Synthesis >
t,[n]
>

ry[n]
=

- 2 f,[n]
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&

Analysis:

1
o] = %5 (x[n] +x[n — 1])

Yoln] =

Yoln] =
Similarly

yiln] = & ([2n] ~x[2n — 1]

lowpass filter

downsampler




Matrix form

YolO]
YOD-]

Y1t0]




n even
upsampler
n odd

lowpass filter




Similarly

L
67

Y1[n21]

vy[n] =

So, the reconstructed signal is

X[n] = voln] + v,[n]

E}& (Yo[n/2] + y4[Nn/2]) n even
=N
PG @[3 - vl " D node




X[2n-1] = % (Yo[n] —y4[n]) = x[2n-1]

from g and kK
X[2n] = & (Yo[n] +yyn]) = x[2n]

N\
So x[n] x[n] B Perfect reconstruction!

In general, we will make all filters causal, so we will
have

X[n] = x[n—nJ P PR with delay




Il
X[-1]
x[0]

X[1]
X[2]

Matrix form

1
e




Perfect reconstruction means that the synthesis
bank is the inverse of the analysis bank.

. L
X = x b LT | BT || —

B
123 123
W1 W )
a&Navelet transform ©

Cmatrix i
a %]

In the Haar example, we have the special case
W-1 = WT ® orthogonal matrix

So we have an orthogonal filter bank, where
Synthesis bank = Transpose of Analysis bank

foln] - hol- ]
f,[n] = hy[- ]




Perfect Reconstruction Filter Banks
General two-channel filter bank

rolNI[Z21 YoInl

Ho2)f=>— 2P —L——

x[nl

r,[n] yaln]

Hi(2)[ > ——L ——

z-transform definition:
4

X(z) = a x[n]z™
n=-¥

Putz = €'V to get DTFT




Perfect reconstruction requirement:
X[n] = x[n-1] (I time delays)

VAN
X(z) =z 1X(2)
Ho(z) and H,(z) are normally lowpass and highpass,

but not ideal
_ H,(w) Ho(W) H (W)

b —

P Downsampling operation in each channel can
produce aliasing




Let’s see why:

Lowpass channel has

Yo(z) = Y2{R,(z”?) + Ry(-z?)} (downsampling)

72{Ho(27) X (z27) + Ho(-z”)X(-z")}

In frequency domain:
X(z) ® X(w) or X(ew)
X(-z) ® X(w+p)
X(@Z%) ® XC,)

YoW) = Y{Ho( ) X(5) + Ho( 5+ PIX( + p)}




Suppose X(w) = 1 (input has all frequencies)
Then Ry(w) = Hy(w), so that after downsampling we have

1/2RO( W7 -+ p) ]/ZRO(W7) 1/2R0(W7 r p)

Yo

X
o\ W

aliasing

Goal Is to design Fy(z) and F,(z) so that the overall
system is just a simple delay - with no aliasing term:

Vo(@) + Vi(2) = 2 X(2)




Fo(2) To(2)

Fo(2) Yo(Z2) (upsampling)

72Fo(2)1 Ho(2) X(2) + Hy(-2) X(-2);
Vi(2) = Y2Fy(2){ Hi(2) X(2) + Hi(-2) X(-2)}

So we want
V2 {Fo(2) Ho(2) + F1(2) Hy(2) } X(2)
+

72 {Fo(z) Ho(-2) + F1(z) Hy(-2) } X(-2)




Compare terms in X(z) and X(-z):

1) Condition for no distortion (terms in X (z) amount
to a delay)

Fo(z) Ho(z) + Fi(z) Hy(2) = 22! 3

2) Condition for alias cancellation (no term in X(-z2))

Fo(z) Ho(-2) + F4(2) Hy(-2z) = O
To satisfy alias cancellation condition, choose

Fo(z) = Hi(-2)
Fi(z) = -Ho(-2)




What happens in the time domain?

Fo(z) = Hy(-2) Fo(w) = Hy(w + p)
= a hy[n] (-2)"

n

= & (-1)"hy[n] z*

n

So the filter coefficients are

fo[n] = (-1) hy[n] alternating signs
f.[n] = (-1)"*1 hy[n] rule
Example

holn] = { ay a, az}>< foln] = { Bg, -by, by}
hy[n] = { b, by, by}

fi[n] = {-aq, a;, -a;}




Product Filter
Define

Po(z2) = Fo(2) Hy(2)

Substitute F,(z) = -Hy(-z) , H(z) = Fy(-2)
In the zero distortion condition (Equation j)
Fo(2) Ho(2) - Fo(-2) Ho(-2) = 2z

l.e. Po(z) - Py(-z) =

Note: I must be odd since LHS I1s an odd function.




Normalized Product Filter
Define
P(z) = z! P,

P(-z) = -z! Py(-z) since lis odd

So we can rewrite Equation n as
z'P(@2) + z'P(-z) = 277!

P(z) + P(-z) = 2

This Is the condition on the normalized product filter
for Perfect Reconstruction.




Design Process

1. Design P(z) to satisfy Equation p. This gives
P,(z). Note: P(z)is designed to be lowpass.

2. Factor Py(z) into Fy(z) Hy(z). Use Equations 0 to
find H,(z) and F,(z).

Note: Equation p requires all even powers of z

(except 29 to be zero:

a p[n]z" + a p[n](-z)" = 2

=l ; n=0

alleven n(nt 0)




For odd n, p[n] and —p[n] cancel.

The odd coefficients, p[n], are free to be designed
according to additional criteria.

Example: Haar filter bank

Hi@) = & (L+2Y) H@) = F(-2zY

Fo2) = Hi(2) = & (1+2Y)
Fi2) = -Hy(-2) = & (1-2Y)
Po(2) = Fo2) Ho(@) = 5 (1 +2)2




So the Perfect Reconstruction requirement is

Po(2) = Po(-2) = S(1+2z1+2?) - 2(1-2z1+12?)

= 2z1 p |1 =1
P(z) = 2! Po(2) = S(1+2)(1+2zY)

Im yA

Zeros of P(2):
1+z =0

1+z1t =0
C

/\
2"d order

Zero at
Z=-1




Course 18.327 and 1.130
Wavelets and Filter Banks

Filter Banks (contd.): perfect

reconstruction: halfband filters and
possible factorizations.




Product Filter

Example: Product filter of degree 6
Po(z) = 1%(-1+9Z'2 + 1623 + 9z4 - z°)

Po(z) - Po(-2) = 2z%

P EXxpect perfect reconstruction with a 3 sample delay
Centered form:
P(z) = z3Py(2) = 11_6(- z3 + 92 + 16 + 9z1—779)
P(z) + P(-z) = 2 1i.e.even part of P(z) = const
In the frequency domain:

P(w) + Pw+p) = 2 Halfband Condition




Note antisymmetry
about w= p/2

P(w) is said to be a halfband filter.

How do we factor Py(z) into Hy(z) Fy(2)?
Po(z) = 1/16(1 + z1)4(-1 + 4z1- z?)
= -1/16(1 + z)42 + 03—z 1)(2 - B — z1)




So P,y(z) has zeros at
z = -1 (4™ order) )

z = 2+CB Note: 2 + @B =575

Im




Some possible factorizations

Hy(2)  (or Fy(2))

Fo(2)  (or Hy(2))

1
15(1 + 2°1)
i1 + z1)?
Yo(l+ 2z 2+ CB-z7)
1/8(1 + z'1)3

(B-1) (1+z1)%2+CB-z7)
42
1/16(1 + z'1)?

-1/16(1 + z)42 + B - z1)(2 - (B - z71)
-1/8(1 + 2232 + B -zY)(2- B -zY)
1A + 27022+ 3B -zY)(2 - B -zY)
-1/8(1 + z1)3(2 - B - )

1/2(L+ 202+ CB - zY) (2 - B - z29)

L (1+zY22-38-zY)

4(CB-1)_ -
-2+@B-zH)(2-AB-zY)




Case (b) -- Symmetric filters (linear phase)

filter length = 2 filter length = 6
{11} /¢{-1, 1, 8, 8, 1, -1}




Case (c) -- Symmetric filters (linear phase)

filter length = 3 filter length =5
a{l, 2,1} a{-1, 2,6, 2, -1}




Case (f) -- Orthogonal filters
(minimum phase/maximum phase)

filter length =4 filter length = 4
o 0 20
L A~1+CB, 3+C8B, 3-C8, 1-CB alo 4%1{13, 3-(8, 3+(B, 1+(B

4040
Note that, in this case, one filter is the flip (transpose)
of the other: f,[n] = hy[3 - n]

Fo(z) = z° Hy(zH)

(0




General form of product filter (to be derived later):

P(z) = 2(1”)'“(1”)'O (|O+k D25k

Po(z) = 2P D P(2)

(1+zl)2p22p1a (Pri-1)(-1)kz - Drk(1=2)"
123 1449444244444443

Binomial Q(2)
(spline) Cancels all odd powers
filter except z-2p-1)

Po(z) has 2p zeros at p (important for stability of iterated
filter bank.)
Q(z) factor is needed to ensure perfect reconstruction.




p =1
P,(z) has degree 2 ® leads to Haar filter bank.
1+2z1 F)_
+z1 — e 1, 1 -
1,1,1, 11— P— 2
1-z1 k)—

1o |o— —2 l5— 0. 0

O—
1+2z1

Fo(z) = 1+27%, Hy(z) =
Synthesis lowpass filter has 1 zero at p
® Leads to cancellation of constant signals in analysis

highpass channel.
Additional zeros at p would lead to cancellation of

higher order polynomials.




p =2

Py(z) has degree4p —2 = 6

Po(2)

(L+z9 5 { () 2 - (D))

1% (L+zH*(-1+ 4z71- 729

1%{- 1+9z2+ 1623 +9z%— 2%}

Possible factorizations
1/8 trivial
2/6 9.
3/5 O\Ollnear phase
4/4 orthogonal

(Daubechies-4)

11



p = 4
Py(z) has degree4p —2 = 14

O

8th order

=1l




Common factorizations (p = 4):
(a) 9/7 Known in Matlab
as bior4.4




(b) 8/8 (Daubechies 8) -- Known in Matlab as db4




Why choose a particular factorization’?
Con5|der the example with p =

One of the factors is halfband
The trivial 1/8 factorization is generally not desirable,
since each factor should have at least one zero at p.

However, the fact that F,(z) is halfband is interesting
In itself.

ve) > I_II | X(Z; I Fo(2) I >Y(Z)

Let F,(z) be centered, for convenience. Then
F,(z) = 1+ odd powers of z
Now

X(z) = V(z?) = even powers of z only



Y(2) = Fo(2) X(2)
X(z) + odd powers
y[n] o X[Nn] . n even
N

©& f,[k]x[n—k]: n odd
k odd

b f,[n] is an interpolating filter

sin (%)n
pNn

Another example: fy[n] =
(ideal bandlimited
Interpolating filter)



Il. Linear phase factorization e.g. 2/6, 5/3
Symmetric (or antisymmetric) filters are desirable for
many applications, such as image processing. All
frequencies in the signal are delayed by the same
amount i.e. there is no phase distortion.

h[n] linear phase b A(W)e—'(Wa+q)

real delays all\ Olf symmetric

frequencies
by a samples

|f antisymmetric

Linear phase may not necessarily be the best choice for
audio applications due to preringing effects.




lll. Orthogonal factorization
This leads to a minimum phase filter and a maximum
phase filter, which may be a better choice for
applications such as audio. The orthogonal
factorization leads to the Daubechies family of
wavelets — a particularly neat and interesting case.
4/4 factorization:

Ho(2) =5z (1 +z)?[(2 + CB) — z°1]

= = {(1+ CB) + (3+ (B)z1 + (3 -(B)z2 + (1- (B)ZY)

Fo(2) = 7ap @+ ZY2(2 - &B) - 2]

= 2273 (1+ 29)[(2 + GB) - 7]

=77 Hy (z7)




P(z) = zPy(2)

= Hy(z) Ho(z")
From alias cancellation condition:
Hi(z) = Fo(-2) = -z3 Hy(-z?1)

F1(z) = -Ho(-2) = z7° Hy(z%)




Special Case: Orthogonal Filter Banks

Choose H,(z) so that

Hy(2) = - 2N Ho(- 27)

Time domain

hyn] = (- 1" hy[N —n]

Fo(2) = Hy (-2) = 2N Hy(z Y
P foln] = ho[N—n]

Fi(2) = - Ho(-2) = 2N Hy(z?Y)

P fy[n] = hy[N—n]

So the synthesis filters, f,[n], are just the time-reversed
versions of the analysis filters, h,[n], with a delay.




Why is the Daubechies factorization orthogonal?
Consider the centered form of the filter bank:

Holz] >y [n]>- 2 Ho(z)
xIn] A—>

— | |no delay
H,[z]F>— 2>y [n]™- 2>—{Po(Z") [Fin centered
form

X[n]

Analysis bank Synthesis bank

causal — only anticausal — only

negative powers positive powers
of z of z




In matrix form:

AEWATES Synthesis

Yo
Y1 |

So

X = WTW x for any x

W'W = | = WWT

An important fact: symmetry prevents orthogonality




Matlab Example 2

1. Product filter examples




Degree-2 (p=1): pole-zero plot

Zeros of the product filter with degree 2
I I I

Imaginary Part

Real Part




Degree-2 (p=1): Freq. response

Frequency response of the product filter with degree 2
I I I I I
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Degree-6 (p=2): pole-zero plot

Zeros of the product filter with degree 6
I I I I
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Degree-6 (p=2): Freq. response

Frequency response of the product filter with degree 6
I I I I I
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Degree-10 (p=3): pole-zero plot

Zeros of the product filter with degree 10
l I I I
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Degree-10 (p=3): Freq. response

Frequency response of the product filter with degree 10
I I I I I

Frequency response magnitude
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Degree-14 (p=4): pole-zero plot

Zeros of the product filter with degree 14
I I I I
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Degree-14 (p=4): Freq. response

Frequency response of the product filter with degree 14
I I I I I I
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