Course 18.327 and 1.130
Wavelets and Filter Banks

Modulation and Polyphase
Representations:

Noble ldentities;
Block Toeplitz Matrices
and Block z-transforms:;

Polyphase Examples




Modulation Matrix

Matrix form of PR condition_s:
[Fo (2) F1(2)] | Ho(z) Ho(-2) | =12z 0]

Modulation matrix, H.(z)
S0

[Fo(2) Fi(2)] = [2z27' O] H, *(2)

Hy'(2) = % | Hy(-2) -Ho(-2)
M) Ho(2)

? = Hy(z) H(-2) - Hy (-z) H, (z) (must be non-zero)




P Fo(z) = % 2z Hy(-2) Q)

. ~jequire these
F.(2) = - — 2771 Hy(-2) m to be FIR

Suppose we choose ? =2z -
Then

Fo(z) = Hy(-2)

F1(z) = -Ho(-2)

0)
%
(0




Synthesis modulation matrix:

Complete the second row of matrix PR conditions
by replacing z with —z:

Fo2) Fi@) | |Hy@ Hy2)

L 1‘?3)_ ' H.(z) Hy(-2)

Synthesis
modulation
matrix, F.(z)

Note the transpose convention in F_,(2).




Noble Identities

1. Consider

X0 [ LU, yIn]

U(z) = H(z*)X(2)
Y(z) =% {U(z ) + U(-z )} (downsampling)
=% {H @) X (2*) + H(2) X (-2*)}
=H(z) % {X(z”) + X (-z”)} b can downsample
first
First Noble identity:

|

yInl, x(g)

2 P»—H(z)

H(z?)




2. Consider

x[n]>

H(z)

U(z) = H(z) X(2)
Y(z) = U(z?)

= H(z?) X(z?)

(upsampling)
P can upsample first

Second Noble Identity:

X[n]
>

= 7

o

H(z?)

y[n]

|, ~ o

x[n]

’,




Derivation of Polyphase Form

1. Filtering and downsampling:

X[n]» H(Z)f»— 2 y[:]]

H(Z) = Heven(z?) + 27 Hyga(29); heyenln] = h[2n]
hogaln] = h[2n+1]

H 2
x[n] even(Z ) ’y[n]

>

z1 Hodd(zz)




y[n]
>

Polyphase
Form




2. Upsampling and filtering

X[n]

>

F(z) = F

X[n]

= 7

even

y[n]
>

F(2)

(2) + 2 Fogq ()

>

Feven (ZZ)

I:odd(zz)




Feven (ZZ)

I:even (Z)

I:odd(zz)

yeven [n]
>

I:odd(z)

yodd[n]
-

y[n]
)

71

Polyphase
Form




Polyphase Matrix

Consider the matrix corresponding to the analysis
filter bank in interleaved form. This is a block
nlitz matrix:

I

hol3] hol2] | hy[1] ho0]| O O
h,[3] h,[2] [h4[2] hyfO]| O O

L
L
L
L

0 0 |ho[3] ho[2] | ho[1] ho[O]
0 0 |hy[3] hy[2] | hy[1] hy[0]

-

4-tap Example




Taking block z-transform we get:

Ho@ = [ hol0] holt] |, [ho[2] hofal
hyf0] hyf1] | [hyf2] hy[3)

ho[0] + 21 ho[2]  h[1] + 2 ho[3]

h,[0] +z*h,[2] h,[1] +z* h,[3]

I_lo,even (Z) I_IO,odd (Z)
Hl,even (Z) Hl,odd (Z)

This is the polyphase matrix for a 2-channel filter bank.




Similarly, for the synthesis filter bank:

Tol0] 1,]0]
fol1] T4[1]

fol2] 14[2]
fol3] 14[3]




= | too1 g0 |, L [fl21 fil21
1] 01l | T R3] 3]

- Note transpose
Foeven (2] Fieven [2] convention for

' Fo oda [2] Fy 0aa [2]] synthesis
polyphase matrix

* Perfect reconstruction condition in polyphase domain:

F.(z) H,(z) =1 (centered form)

This means that H,(z) must be invertible for all z on the

unit circle, i.e.
det H (e") * O for all frequencies w.




 Given that the analysis filters are FIR, the
requirement for the synthesis filters to be also
FIR Is:

det H)(z) =z' (simple delay)

because H;*(z) must be a polynomial.

Condition for orthogonality: F (z) Is the transpose
of H,(2), I.e.

H,"(z1) Hy(2) =1
l.e. H (z) should be paraunitary.




Relationship between Modulation
and Polyphase Matrices
Eo,even[n] = hO[Zn]

HO(Z) = HO,even(ZZ) + 2z HO,odd(ZZ) : N
Mo adln] = ho[2n+1]

Hl(z) = Hl,even(zz) + Z_l Hl,odd(zz)
Two more equations by replacing z with -z.
SO In matrix form:

_HO(Z) HO('Z)_ Oeven(z) I_IO odd(z) 1 1

H Z)iﬁ)— (ﬁ gﬁ) |z -2'1_

H.(2) H,(z?)
Modulation matrix Polyphase matrix




!
1 -1
123

FZ
Delay Matrix 2-point DFT Matrix

1
w N-1
W 2(N-1)

.2p
N

;W = —> N-point DFT

Matrix

1 wN-1 y2(N-1) \y(N-1)?

1F

N N _ e .

4_Complex conjugate: replace w with w = el
17




So, in general

Hn(z) Fy = Hy(2") Dy(2)

N = # of channels in filterbank
(N =2in our example)




Polyphase Matrix

Example: Daubechies 4-tap filter

nol0] = 228 (1) =328y 10y =By 15 1B

42 _

42 42 42

Ho(2) =E{(1 +(CB)+(3+(B)z1+(3-03)z2+(1-(B) 23

H1(2) = E{(l -(B) - (3-CB) z1 + (3 + B)z? - (1 + B)Z?




Time domain:
hol0]2 + ho[1]2 + hg[2]2 + ho[3]2 = L{(4 + 2CB) + (12 + 6 CB) +
(12 — 6 B) + (4 — 2 CB)}
=1
holO] ho[2] + ho[1] ho[3] = L {(2B) + (-2B)}

=

l.e. filter is orthogonal to its double shifts




Polyphase Domain:

Hoeen@ = 765 {1+ @) +(3- B) 7Y

{3+ ®) +(1-B) 2

HO,odd(Z) A CE

S {(1-GB) + 3+ CB) 21

Hl,even (Z) A CE

Hioa® = 72{-(3-B)- 1+ &)z

1+B 3+CB

g Chpsy




H,(z) =A +B z*!

H,"(z*) Hy(z) = (AT +B' z)(A + Bz%)
= (ATA + BTB) + ATBz1 + BTAZ

L 1+B 1-B| 1 [1+@ 3+
3+ -B-®B) 42 [1-B (3B

ATA = —=

(4+2c13)+(4 2C8) (6+4CB) - (6-4CB)_
(6+43)- (6-43) (12 +6C8) + (12 - 6(B)

Y, &4
B4 Ya




1
4 Cp

f12—6_c"1_3) +(12 +608) (6-408)- (6 +4c"_1__3_)_
(6-4CB)— (6 +4C(8)  (4-2CB)+ (4+23)

s - (Bl4
-CBl4 Ya _

b ATA+B'B = |




e L [1+@ 1-B| 1 [3-B 18
4% |[3+B (3-CB)[4 |3+ (B -(1+(B)

L [e®+2® (2-2 ___J
5 |©-6 (2 B) + (2 )

32
0

BTA = (ATB)T =0

So

HpT(z'l) Hp(z) = |.e. Hp(z) IS a Paraunitary Matrix




Modulation domain:

Ho(z) Ho(zt) = P(2) = 1_16 (-z°+9z + 16 + 921 — 773)

Ho(2) Ho(-21) = P(-2) = —&= (292 +16 - 921 + 29)

So
Ho(2) Ho(z?) + Ho(-2) Ho(-z1) = 2

|.e.
[Ho(W)|"= + [Ho(W +p)|*= = 2




Magnitude Response of Daubechies 4-tap filter.

Magnitude response of Daubechies 4-tap filter.
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Phase response of Daubechies 4-tap filter.

Phase response of Daubechies 4-tap filter.
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Course 18.327 and 1.130
Wavelets and Filter Banks

Orthogonal Filter Banks;

Paraunitary Matrices;
Orthogonality Condition (Condition O)
In the Time Domain, Modulation
Domain and Polyphase Domain




Unitary Matrices

The constant complex matrix A Is said to be unitary If
ATA = |

example:




Paraunitary Matrices

The matrix function H(z) is said to be paraunitary If
It is unitary for all values of the parameter z

H'(z') H(z) = | forallz1 O
Frequency Domain:
HT(-w) H(w) = | for all w

or H*"(w) H(w) = |

Note: we are assuming that h[n] are real.




Orthogonal Filter Banks

Centered form (PR with no delay):
YolNn]

]

y1[n]

Synthesis bank = transpose of analysis bank

ho[n] causal P fy[n] ° hy[-n] anticausal




What are the conditions on hy[n], h;[n], Iin the

() time domain?
(i) polyphase domain?
(itl) modulation domain?




Time Domain
Analysis: N = 3 (filter length = 4)

K
ho[3] hol2] hl2] ho[O]
ho[3] ho[2] hol2] ho[O]
ho[3] hol2] hof1] hofO]
ho[3] ho[2] hl2] ho[O]
L

K

h,[3] h,[2] h,[1] h,[0]
h,[3] ha[2] h[1] h,[0]
h 2] h[1] h
. [ el gl 1

L

OEGSNES LN G

x X X X X X X X X X

= o




Synthesis:




Orthogonality condition (Condition O) is
WTW = =WW' b W orthogonal matrix

Block Form:

an

L'L+B™B =1

LLT LBT | _ [1 o
BLT BBT 0 |

LLT=1 b & hg[n] ho[n — 2k] = d[K]

n

LBT=0 P & hy[n] hyn—2k]= 0

n

BBT=1P & hy[n] hy[n -2kl = d[K




Good choice for hy[n]:
h,[n] = (-1)" hy[N-n] , N odd

» Alternating flip
ple: N =3

0 Nyl 3]

1] -ho[2]
Nol1]
-h,[0]

qlf
With this choice, Equation (5) is automatically satisfied:

K = -1: ho[0]hg[1] - ho[1]ho[O]

K = 0: ho[O]hg[3] - ho[1]ho[2] + h[2]hg[1] — ho[3]ho[O]

K = 1: ho[2]h[3] = hg[3]hg[2] =0
K =x2: no overlap




Also, Equation (6) reduces to Equation (4)

dlk] = & hy[n] h,[n-2k] = & (-1)" hy[N-n] (-1)"2k h [N-n+2K]

n n

=& hy[1] ho[l + 2K]

So, Condition O on the lowpass filter + alternating flip
for highpass filter lead to orthogonality




Polyphase Domain

Xevenl] Yoln]
— S

Ho(2)|  [Hp'(@Y)

XodalN-1] y,[N]
+ B

I_|O,even (Z) HO,odd(Z) I Polyphase
Hlieven(z) Hliodd(z) Matrix




Condition O:

H,7(zY) H)(z) =1 P H,(2)is paraunitary

I_|O,even (Z_l) Hl,even (Z_l) HO,even (Z) HO,odd (Z)

HO,odd(Z_l) Hl,odd(z_l) Hl,even(z) Hl,odd(z)

Reverse the order of multiplication:

I_lo,even (Z) I_IO,odd (Z) Ho,even (Z_l) Hl,even (Z_l)

Hl,even(z) Hl,odd(z) Ho,odd(z_l) Hl,odd(z_l)




Express Condition O as a condition on Hy o en(2),
HO,odd(Z):

HO,even(Z) HO,even(Z_l) i HO,odd(Z) Ho,odd(z'l) =1

Frequency domain:

1/2|_|O,even(VV)1/22 + 1/2HO,odd(W)1/22 =1




The alternating flip construction for H,(z) ensures
that the remaining conditions are satisfied.

HO(Z) = HO,even(ZZ) + Z_1Ho,odd(zz)
H,(z) = -zN Hy(-z1) alternating flip

= -z {Ho,even(z_z) - Z HO,odd(Z_Z)}

g lmte S - te

z't Hl,odd(zz) Hl,even(zz)
SO
Hl,even(z) = Z(_N+1)/2 HO,odd(Z_l)
Hl,odd(z) = -z(N+D)2 HO,even(Z_l)

b HO,even(Z) Hl,even(z_l) T HO,odd(Z) Hl,odd(z_l) =0
and Hl,even(z) Hl,even(z_l) + Hl,odd(z) Hl,odd(z_l) =1




Modulation Domain

YolN]
x[n] Ho(2) > . Hoz D) =7 x(n]

- +
y4[n]
>—H,(z) > > H,(z ) [~

PR conditions:

Ho(z) Ho(zY) + Hy(z) Hi(z1) = 2 No

distortion

Ho(-z) Ho(zY) + Hy(-2) Hi(z1) = O INIEYS
cancellation

[Ho@™h) Hi@ )] [Ho(z) Ho(z)

L]

H.(z) modulation matrix




Replace z with —z in Equations (10) and (11)

Ho(-2) Ho(-z%) + Hy(-z) Hy(-z7) = 2
Ho(z) Ho(-z%) + Hy(z) Hy(-z%) = 0

HozY) Hy@Y |[H@ Ho | [2 o

A239237 4.3

H,'(z%) H(2) 2

Condition O:
H T(z1) H._(z) = 21 b H,(2)is paraunitary




Reverse the order of multiplication:
Ho(2) Ho(-2) [[Ho(zY) Hy(zh) 7

H,(2) Hi(-2) JLH(-z*) Hy(-z7) _

Frequency Domain:

VH (W)Y + YVH (w+p)ys =2

Again, the remaining conditions are automatically
satisfied by the alternating flip choice, H,(z) = -z™ Hy(-z1)




Summary

Condition O as a constraint on the lowpass filter:
Matrix form: LLT = |
Coefficient form: a h[n]h[n-2k] = d[K]
n

Polyphase form:
HO,even(Z) Ho,even(z_l) = Ho,odd(z) Ho,odd(z_l) =1

Modulation form: Hy(z) Hy(z!) + Hy(-2) Ho(-21) = 2

Then choose H,(z) = -zN Hy(-z?) . N odd
l.e., hyn] = (-1)" hg[N-n]




Course 18.327 and 1.130
Wavelets and Filter Banks

Maxflat Filters: Daubechies and

Meyer Formulas.
Spectral Factorization




Formulas for the Product Filter

Halfband condition:

P(w) + P(w+p)=2
Also want P(w) to be lowpass
and p[n] to be symmetric.

Daubechies’ Approach

Design a polynomial, P(y), of degree 2p - 1, such that
P(0) = 2
POO)=0;1=1,2,...,p-1

PO(1)=0;1=0,1, ...,p-1




Can achieve required flatness at y = 1 by including a
term of the form (1 —y)P i.e.

P(y) =2(1 -y)P By(y)
Where B,(y) Is a polynomial of degree p — 1.

How to choose B (y)?

Let B,(y) be the binomial series expansion for
(1 —y)P, truncated after p terms:

p(p +1) :
By(y) =1+py+— ye+ ..+ 28_21 yP

= (1 -y)?+ O(yP)

< Higher order terms




P(y) = 2(1 — y)P[(1-y)P + O (yP)]
=2+ O(yP)




Thus
PUE) = @ 5 120, 2 u
So we have

— p-1
P(y) = 2(@-y)ra (P+tk-1)
w) = 20yya (Prh-1)

Now let L o T
y_( S )( < maintains symmetry

1—cosw

P(W) = 5 (1—cosw)

_ 2(1+c;os.w)lolO 1(p+k+1)(1—cosw)




Zz domain:

o=z (S (B) 3059 () ()




Meyer's Approach
Work with derivative of P(y):

= -C yP? (1 -y
y ~
2-CoyPt(1-y)ptdy (P(0) = 2)
0)

W p-1 p-1 .
_ 2-C’(‘)(1_COS w) (1+COS W) SiNW g
A 2 2

W . 5 p-1 .
_ 5. C’(‘)(l COS w) SINW g
0 2 2

W
i.e.| P(w) = 2—cgsin2p‘1wd W




Spectral Factorization
Recall the halfband condition for orthogonal filters:
z domain:

Ho(2) Ho(zH) + Ho(-2) Ho(-z) = 2
Frequency domain:

VH (W) Y5 + YH(w+p) s = 2

The product filter for the orthogonal case is
P(z) = Hy(z) Ho(z")
P(W) = YH(W)Y5 b P(w)3 0
p[n] = ho[n] * he[-n] P p[n] =p[-n]

The spectral factorization problem is the problem
of finding Hy(z) once P(z) is known.




Consider the distribution of the zeros (roots) of P(z).

Symmetry of p[n] b P(z) = P(z?)
If z,is aroot then so is z, 2.

If p[n] are real, then the roots appear in complex,
conjugate pairs.

(1-2z,zY)(1 -2zt = 1—(z -Irég_)) z1+ (z )z &

real real




Complex zeros Real zeros

If the zero z, is grouped into the spectral factor Hy(z),
then the zero 1/z, must be grouped into Hy(z?).
P hy[n] cannot be symmetric.




Daubechies’ choice: Choose Hy(z) such that
(1) all its zeros are inside or on the unit circle.
(1) It Is causal.

l.e. Hy(z) Is a minimum phase filter.

Example:

Hy(2) Ho(z)
(Minimum phase) (Maximum phase)




Practical Algorithms:

1. Direct Method: compute the roots of P(z)
numerically.

Cepstral Method:
First factor out the zeros which lie on the unit
circle

P(z) = [(1+zH)(1 +2)]° Q2)

Now we need to factor Q(z) into R(z) R(z') such that
I. R(z) has all its zeros inside the unit circle.
. R(z)Iis causal.




Then use logarithms to change multiplication into
addition:

Q@) Rz) - R@@Y
ng@ = BRB@ + By
Q@) R() R(z)

Take inverse z transforms:

an] = r[n] + t[-n]

T

Complex cepstrum
of q[n]




Example:

R(2) R(2) = In R(z)

R(z) has all its zeros and all its poles inside the unit

AN
circle, so R(z) has all its singularities inside the unit

circle. (In0O = -¥ |, In¥ = ¥ )




All singularities inside the unit circle leads to a causal
sequence, e.g.

Pole at z = z,

If |z,| <1, we can write
y

X(w) = a (z)"e™n
n=20
b x[n] is causal

So /F[n] IS the causal part of a[n]:
0 %adlo] ; n=00
rfn] = ™ aln] , N >0 N

©O0 , n<0(Q0




Algorithm:

Given the coefficients g[n] of the polynomial Q(z):

I. Compute the M-point DFT of q[n] for a
sufficiently large M.

. 2pkn
QK] = & q[nje’™ " ; 0E£k<M

. Take the logarithm.
QK] = In (QIK])

. Determine the complex cepstrum of g[n] by
computing the IDFT.

j 20k

an] = 4 A QI e't




IvV. Find the causal part of a[n].

V.

00 q0] ; n=0Q
Y] = N a[n] , n >0 N
OO0 . n<0Q

Determine the DFT of r[n] by computing the
exponent of the DFT of’?[n].

M-1 A

RIK] = exp (R[K]) = exp (& Hnje™ -



vi. Determine the DFT of hy[n], by including half the
zeros at z = -1.

Ho[k] = RIK] (1 + e=55)P

vil. Compute the IDFT to get hy[n].

M-1 2
holn] = 45& Holk] e’ "™




