Course 18.327 and 1.130
Wavelets and Filter Banks

Multiresolution Analysis (MRA):
Requirements for MRA,;

Nested Spaces and
Complementary Spaces;
Scaling Functions and Wavelets




Scaling Functions and Wavelets

Continuous time:

1

f (t) Box function

0

f (2t) Scaling

1

f(2t-1)
Scaling +
Shifting




For this example:
f() = f(2t) + (2t -1)
More generally:

Refinement equation
or

Two-scale difference

equation

£(t) = 24 hyK]f (2t — k)
k=0

f(t) is called a scaling function

The refinement equation couples the representations
of a continuous-time function at two time scales. The
continuous-time function is determined by a discrete-
time filter, hy[n]! For the above (Haar) example:

holO] = hyll] = %~ (alowpass filter)




Note: (1) Solution to refinement equation may not
always exist. If it does...

(1) f (t) has compact support i.e.
f(t) = Ooutside O£t <N
(comes from the FIR filter, hy[n])
(111) f (t) often has no closed form solution.
(iv) f (t) is unlikely to be smooth.
Constraint on hg[n]:

N
of ()dt = 2 & hy[K] of (2t — k)t

N
28 ho[k] « ¥ of (t)dt

Assumes of (t)dt 1 O




1
w(t) Sguare wave

Now consider: of finite length -
Haar wavelet

t

f(2t - 1)
t(2t) Scaled + shifted
Scaled + sign flipped

1/2 1

w(t) =f(2t) - f(2t 1)




More generally:

N
w(t) = 2a h,[k] f (2t — k) Wavelet equation
k=0

For the Haar wavelet example:

h,0] = Y h,1] = -% (a highpass filter)




Some observations for Haar scaling function and wavelet
1. Orthogonality of integer shifts (translates):

f(t-1)

1 t 0
11 ifk=0
}O otherwise

d[K]

of (t) f (t — k)dt

Similarly
ow(t) w(t — k)dt = d[K]

Reason: no overlap




2. Scaling function is orthogonal to wavelet:

1

1 f (t)

w(t)

& () w(t)dt = 0

Reason: +ve and —ve areas cancel each other.




3. Wavelet is orthogonal across scales:

w(t) w(2t)

+
1/2

ow(t) w(2t)dt = 0, ow(t)w(2t—-1)dt = O

Reason: finer scale versions change sign while
coarse scale version remains constant.




Wavelet Bases

Our goal is to use w(t), its scaled versions (dilations)
and their shifts (translates) as building blocks for
continuous-time functions, f(t). Specifically, we are
Interested in the class of functions for which we can
define the inner Qéroduct:

<f(t), g(t)> = _¥c‘)f(t) g*(t)dt < ¥

Such functions f(t) must have finite energy:
¥
IF)]|° :_¥G/z°(t)1/22 dt < ¥

and they are said to belong to the Hilbert space, L2(A).




Consider all dilations and translates of the Haar wavelet:
W (t) = 22wt -k) ; -¥£]£¥
¥ LEKEY

Normalization factor so that ||w; ()] = 1

oW, (1) W (1) dt = 0202 w(2it — k) . 22w (2%t — K)dt
I1ifj=Jand k =K
}O otherwise

dj—-J]d k—-K]
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w;,(t) form an orthonormal basis for L2(A).

f(t) = & by wy(t) 5  w () = 2”2w(2it —k)
J,K

¥
by, = OF(t) wy (1) dt




Multiresolution Analysis

Key ingredients:
1. A sequence of embedded subspaces:
{0y 1 .1 VoIl Vol Vil 1 Vil Vgl T L2(A)

L2(A) = all funé:tions with finite energy

= {f(t): O V() V5 dt <¥} Hilbert
- space

Requirements:

e Completenessas|® ¥ . If f(t) belongs to
L2(A) and fi(t) Is the portion of f(t) that lies in
V,, then @ fi) = F(t)




Restated as a condition on the subspaces:

E V. = L2(A)

j=-¥

« Emptinessas|® - ¥

mof® | = o

j® -¥

Restated as a condition on the subspaces:

C V = {0}
| =-¥




2. A sequence of complementary subspaces, W;,
suchthat V;+W, =V,

and V;C W, = {0} (no overlap)

This Is written as

VAW, = V,,; (Direct sum)

Note: An orthogonal multiresolution will have W,
orthogonalto V; : W; 2_V,.
So orthogonality will ensure that V; C W, = {0}




We thus have

V, = V, AW,
V., AW, =
V, AW,

2
3

J ~ VJ-lA W4

2(A) = V. A &
L2(A) = VoA & W

We can also write the recursion for | <0
V, = V., AW,
= V,AW,A W,

~ B
p L2A) = a W,

j =¥




3. A scaling (dilation) law:
If f()) T V;then f(2t) T Vi,
4. A shift (translation) law:
If f() T V; then f(t-k)T V, k integer
5. V, has a shift-invariant basis, {f(t-k) : - ¥ £k £ ¥}
W, has a shift-invariant basis, {w(t-k) : - ¥ £k £ ¥}

We expect that V; = V,+ W, will have twice as
many basis functions as V, alone.
First possibility: {f (t-k) , w(t-k) : - ¥ £k £ ¥}
Second possibility: use the scaling law I.e.

if f(t-k) T V,,then f(2t-k)1 V,




So
V, has a shift-invariant basis, {v2 T (2t-k): - ¥ £ k £ ¥}

Can we relate this basis for V; to the basis for V,?
We know that
Vo IV,

So any function in V, can be written as a combination
of the basic functions for V;.

In particular, since f t) T V,, we can write

f()= 2;‘;‘1( ho[k] T (2t = k)

This Is the Refinement Equation (a.k.a. the Two-
Scale Difference Equation or the Dilation Equation).




We also know that
Wy = V=V,

Vl
This means that any function in W, can also be written

as a combination of the basic functions for V;.
Since w(t) I W, we can write

_ 5g 3 Wavelet
w(t) = 2? h,[k] f(2t — k) Seaion




Multiresolution Representations

Functions:

L*(A) =V, AW, AW, AW, A ...

f
T Level 2 detall
Level 1 detall

Level O detall

Finite energy Coarse
functions approximation

Images:




Multiresolution Representations
Geometry:

N=34 Level =3 N=3514 Level=5

N = 2050, Level = 6 N=3819%, Level =7 N=32770, Level = 8

Mesh courtesy of Igor Guskov (Caltech)



Course 18.327 and 1.130
Wavelets and Filter Banks

Refinement Equation: Iterative and
Recursive Solution Techniques;

Infinite Product Formula; Filter Bank
Approach for Computing Scaling
Functions and Wavelets




Solution of the Refinement Equation

o) = 2% nolk] §2tK)

First, note that the solution to this equation may not
always exist! The existence of the solution will depend
on the discrete-time filter h[k].
If the solution does exist, it is unlikely that @(t) will have
a closed form solution. The solution is also unlikely to
be smooth. We will see, however, that if hy[n] is FIR with
ho[n] = O outside 0<n <N
then @t) has compact support:
@(t) = 0 outside O<t<N




Approach 1 Iterate the box function  @(t)

@9(t) = box function on [0, 1]

@00 = 23 holk] @ (2t - k)

If the iteration converges, the solution will be given

> 0

| - 00

This is known as the cascade algorithm.




Example: suppose hylk] = {Y, Y2, Ya}
e () = 2@)(2t) + ¢V (2t-1) + 2 ¢V (2t -2)
Then

@Ot

Converges to the hat function on [0, 2]




Approach 2 Use recursion
First solve for the values of @(t) at integer values of t.

Then solve for @(t) at half integer values, then at quarter
Integer values and so on.

This gives us a set of discrete values of the scaling
function at all dyadic points t = n/2'.

At integer points:

o) = 2% K] @(2n - k)




Suppose N = 3
®0) = 23 holk] oK)
®1) = 23 hylk] ¢2-K)
®2) = 23 holKk] g4k

03) = 2.3 holkl 6

Using the fact that @n) =0 forn<0O0and n >N, we
_Ccan write this in matrix form as
¥0) Nol0] ®0)
®1) |~ [hol2] ho[1] ho[O] 1)

0.¢) hol3] hol2] ho[1] 0.7y
- 93) hol3] 0.€)




Notice that this is an eigenvalue problem
AD = AD

where the eigenvector is the vector of scaling function
values at integer points and the eigenvalueis A = 1.

Note about normalization:

Since (A - Al) ® = 0 has a non-unique solution,

we must choose an appropriate normalization for ®
The correct normalization is

¥ o) = 1

This comes from the fact that we need to satisfy the
partition of unity condition, > @Xx-n) = 1.
n




At half integer points:

0(2) =23 k] (n-k)

So, for N = 3, we have

@(112) hol1] holO]
®3/2) ho[3] hol2] hol1] holO]

wor2) ho[3] hol2]




Scaling Relation and Wavelet Equation
In Frequency Domain

@) = 23 holk] @2t - k)

Jaeiadt = 2 % ho[K] [ o2t — k) eiotdt

2 Zk: ho[K] Y% J'(p(T)e—iQ(r +K)2 d1

% ho[k] e-iQk/Z J‘(KT) - 1QT/2 d-[

— 00




Hy(@ . o(2)
Ho@) . Ho @ . 9

:{jljl Ho(% } %(O)

/(\p(O) = j @(t) dt = 1 (Areais normalized to 1)




AN 00
O ()= HO(%) Infinite Product Formula
j=1 "\2

Similarly
w(t) = 2> h,[k] @2t — k)
K

leads to " R
W(Q) = H(%) ¢ (2)

Desirable properties for Hy(w):

e H(O) = 1, so that /(b(O) =1
 H(w) should decay to zero as w - T,

sothat |@ (Q)Td Q <o




Computation of the Scaling Function and
Wavelet — Filter Bank Approach

Yolnb{1 2 [MHq (b2 2 PH (e 1] 2 -

Xo[n}‘ 12 Hl((ﬂ)”—|

X4[N] 12 F‘

X,[N] -

Normalize so that > hy[n] = 1.
n




I. Suppose yyn] = 9[n] and x,[n] = O.
Yo(w) =1
Y(@) = Yo(2w) Hy(w) Ho(w)
Yo(w) = Y(20) Hp(w) Ho(200)Hp(w)
Y3(w) = Yy(20) Hp(w) Ho(4w) Hy(2w) Hy(w)

After K Iterations:

K-1
Yi(0) = 11 Ho(2 )

What happens to the sampling period?
Sampling period at input = T, = 1 (say)
Sampling period at output = T, = %X




Treat the output as samples of a continuous time
signal, yC (t), with sampling period Y2K;
ykInl =2y<(n/2)

=Y (W) = Y(}; k) ; M<W<ET
(Y (t) is chosen to be bandlimited)

Replace 2w with Q:

N K-1 K .
YUQ) = V@29 = [ Ho@/2k) = M Hy(Q/21) ;

2K Q < 2%

So
lim YC(Q) = I'I HO(QIZJ) (p(Q)

k—)oo




2K y[n] converges to the samples of the scaling
function, @(t), taken att = n/2K.

1. Suppose y,[n] = 0, Xp,[n] = d[n] and all other x,[n] =
K-2
Yr(w) = Hy (2" w) M Ho(240)

Then

Ye(Q) = Y (Q/2¢) = Hl(ﬂ)Kﬁ H, (Q/2K++)

1( ) rl H (2 2
S0 N
lim YC(Q) H,(Q/2) 9 (Q/2) = W(Q)

K—>00

2Ky [n] converges to the samples of the wavelet,

w(t), taken att = n/2K.




Support of the Scaling Function

yk-&[n] i VL”] o] yk[’n]

length {v[n]} = 2-elength {y,,[n]} - 1
Suppose that
hojn] = 0 forn<0 and n >N

—=length {y,[n]} = length {v[n]} + length {hy[n]} -1
= 2+ length {y,4[n]} + N-1
Solve the recursion with length {yy[n]} = 1
SO
length {y,[n]} = (2" -1)N+1




l.e. length {yg(t)} = Tk .length {yg[n]}

_ (2K—1)N+1
2K

Iim K = o
length {@(t)} = N

So the scaling function is supported on the interval [0, N]




Scaling Function
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Matlab Example 6

Generation of orthogonal scaling
functions and wavelets

MATLAB M-file MATLAB M-file




By Inverse DWT

=caling function and wavelet by iteration of synthesis filter bank.

— 5Scaling function
—  Wavelet




By Recursion

acaling function and wavelet by recursian.

— Scaling function
—  WWavelet




Comparison

Comparison of the two methods (recursion is exact.)

— Scaling function using iteration
— =caling function using recursion




Matlab Example 7

Generation of biorthogonal scaling
functions and wavelets.




Primary Daub 9/7 Pair

— Primary scaling function
— - Primary wavelet




Dual Daub 9/7 Pair

1 1 1
— Dwal scaling function
-- Dual wavelet




