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+ Review of probability
= Definition, properties, examples
= Random variable
= Random process

= Signal modeling via random process

+ Multimedia signal properties & formats
= Digital signals
* Image/video signals: properties & formats
= Color space

* Error & similarity measurements




Deterministic versus Random

o Deterministic

= Signals whose values can be specified explicitly

= Example: a sinusoid

¢ Random

= Digital signals in practice can be treated as a
collection of random variables or a random process

* The symbols which occur randomly carry information

+ Probability theory

* The study of random outcomes/events

= Use mathematics to capture behavior of random
T outcomes and events




grsubaniaty £

+ Events and outcomes

= Let X be an event with N possible mutually
exclusive outcomes {X“ Xoass. , X5 }

= Example _
= A coin toss is an event with 2 outcomes:
Head (H) or Tail (T) e N
= A dice toss is an event with 6 outcomes: | \ '-: .
{1,2,3,4,5,6} " | -

+ Probability

* The likelihood of observing a particular
outcome X, above

= Standard notation P[X = Xi]




Important Properties

+ Probability computation or estimation
N,  number of possible outcomes X,

P[X =X |=—

N total number of outcomes

. ¢ total
| + Basic properties

= Every probability measure lies inclusively between 0 and 1

0<P[X =X ]<1, Vi

= Sum of probabilities (I)\If all outcomes 1s unity:

SEPXC=X.|=1

i=1
= For N equally likely outcomes

P[X = X,]=P[X =X,]=-=P[X =X, ]==

G = For two statistically independent event P [ AB- =P [A]P [B]




Probability Examples

o Fair coin flip |

szﬂzﬂxzﬂ=5
+ Tossing two honest coins: what is the probability of

observing two heads or two tails?

. : 1
Four equally likely outcomes P[00 or 1 1] ih )

{00,01,10,11} 2

+ Poker game with a standard deck of 52 cards, what

1s the probability of getting a 5-card heart flush?

R 13) 13!
134 Possible flush outcome =—=1287

5) 85!
P , P[heart flush]=0.0495%
s, Total possible outcome( 52 52!
A =——=2598960
5 475!
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+ Conditional probability of an event A assuming
that event B has occurred, denoted P[A|B], equals

P[A|B]= P[ﬁ[E]B]

PAP[B| Al
PB]

+ Bayes’ Rule: P|A|B|=

+ Independent events:
P[A~nB]|=P[B|P[A|B]|=P[B|P|A]



Random Varlable

+ Random variable (RV) Q

= A random variable X is a mapping which
assigns a real number X to each possible
outcome of a random experiment &

&
ol

= A random variable X takes on a value X from a
given set. Thus 1t 1s stmply an event whose
outcomes have numerical values

= Examples

= X 1n coin toss, X=1 for Head, X=0 for Tail

* The temperature outside Barton Hall at any
moment t

= The pixel value at location X, y in frame n
of a future Hollywood blockbuster

v



Probabilit_y Density Function

+ Probability density function (PDF) of a RV X
= Function f, (X) defined such that:

= Histogram of X !!!
= Main properties:




PDF Examples

e 1/(a—b), a<x<b
SR otherwise

e—\/E‘X—,u‘/G

1
Af i e e
x (X) e

0 a b X
Uniform PDF

7 X
: g (6w’ /207 Laplacian PDF

t f i
X(X) O'\/g

/l\ >

yz X
Gaussian PDF




Discrete _Random_ Variable

+ RV that takes on discrete values only
o PDF of discrete RV = discrete histogram

+ Example: how many Heads in 3 independent
coin tosses?

ol '-‘i"--

nN

+

38 38
fy (X)
1f8 1i8
0 1 2 3 X

fo (0 =D P(x)dlx=x]  with P, (x)=P[X =x]




Expectation

+ Expected value

= Let g(X) be a function of RV X. The expected value
of g(X) is defined as

E[g(X)]= ] g(x)f (x)dx

= Expectation 1is linear!

= Expectation of a deterministic constant is itself: E[C] =

+ Mean 1y, = E[X]|= wafx (x)alx
o Mean-square value E[X 2]
+ Variance oy = EKX — Hy )2J

E|X? |= 0% + 1




Cross Correlation & Covariance

¢ Cross correlation
= X, Y: 2 jointly distributed RVs

= Joint PDF: Vo %,
Plx, <X <x,,y,<Y<y,]|= H f. (X, y)dxdy
= Expectation: =, Yi X%

E[g(X,Y)]= | Ja(x,y)fy (X, y)xdy

—00—00

= Cross-correlation:

R,, = E[XY]

+ Cross covariance
Cyy = E[(X — Hy )(Y — Hy )]
= Ryy = Cyy + 1y 1ty
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o Marginal PDF: f, (x)= foo Frr (X, Yy

fy (y) = foo Fyy (X, th

o Statistically independent: fy (X, y)= f (x)f, (y)

+ Uncorrelated:  E[XY|=E[X]E|Y] ieC,, =0

Iwith 0-mean RVs
¢ Orthogonal: E[XY]=0




Random Process

+ Random process (RP)
= A collection of RVs
= A time-dependent RV
= Denoted {X[n]}, {X(t)} or simply X[n], X(t)
= We need N-dimensional joint PDF to characterize X[n]!

= Note: the RVs made up a RP may be dependent or
correlated

= Examples:
= Temperature X(t) outside Barton Hall

" A sequence of binary numbers transmitted over a
communication channel

= Speech, music, image, video signals




Wide-Sense Stationary

+ Wide-sense stationary (WSS) random process (RP)

= A WSS RP is one for which E[X[n]] is independent of n
and R(m, n) = E[X [m]X [n]] only depends on the
difference (M —n)

= Mean: M, = E[X [n]]
= Auto-correlation sequence: Ry (k)=E[X[n]X[n—k]]
nerwy: E[X]]= R (0

= Variance: oy = E[(X[n:—mx )2] ooy it (O)—mi

= Co-variance: C,y (k) = E[(X [n]— my )(X [n = k]_ My )]

What happens if the WSS RP has 0-mean?
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White Random Process

Power spectral density

* The power spectrum of a WSS RP is defined as the
Fourier transform of its auto-correlation sequence

xx(ejw) ZRXX )ejwk

White RP

= A RP i1s said to be white if any
uncorrelated, i.e., E[X [n]X [mﬁ] -

White WSS RP

White 0-mean WSS RP 5
O (e )

Ry (K) * o

m:,
Ryx (k):{ 2x

air of samples are

E[X [n]E[X [m]Lm

K=-0

o +m;, k=0

0
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Wil [ x[n]
white 0-mean = Zn Y AR(N) signal
WSS Gaussian

noise

¢ For speech: N =10 to 20
o Forimages: N=1!and @, =0.95




Continuous & Discrete Representations

Continuous-Amplitude

Discrete-Amplitude

x0 X1
Continuous g \|—|7

-Time i : :
(Space) Local telephone, cassette-tape g

recording & playback,

phonograph, photograph telegraph

X[n]A X[n
Jbgrete 41107 W TNMJHH

. » N

-Time I T T T T I » N CD, DVD, cellular phones,
(Space) Switched capacitor filter, digital camera & camcorder,

speech storage chip, half-tone
photography

digital television, inkjet
printer




Multi-Dimensional Digital Signals

+ Images: 2-D digital signals

pixel

® O O

black gray white 4 Video Sequences: 3-D digital signals,
p=0 p=128 p=255 a collection of 2-D images called
frames

y |

Yellow

\/



_Popular Signal Formats

+ RGB
= Red Green Blue, typically 8-bit per sample for each color plane

¢ YCrCb

= Y: luminance, gray-scale component
= Cr & Cb: chrominance, color components, less energy than Y

= Chrominance components can be down-sampled without much
aliasing

Y| [ 0257 0504 0098 |[R] [16
C, |=| 0439 -0.368 —0.071| G |+]128

C,| [-0.148 —0291 0439 |B| |128




_Popular Signal Formats

\, ¢ CIF: Common Intermediate Format 3
| = Y resolution: 352 x 288 Frame
= (Cr, Cbresolution: 176 x 144 n

= Frame rate: 30 frames/second progressive

= 8 bits/pixel(sample)

= Y resolution: 176 x 144
= Cr, Cb resolution: 88 x 72 X

* Frame rate: 30 frames/second progressive
Frame

n+1

= 8 bits/pixel (sample)
o TV -NTSC

= Resolution: 704 x 480, 30 frames/second interlaced
e L 2 DVD — NTSC

= Resolution: 720 x 480, 24 — 30 frames/second
progressive

v

Cr

Cb

\ 4

Cr

Cb




High-Definition Television (HDTV)

o 7201
= Resolution: 1280 x 720, interlaced

o 720p
= Resolution: 1280 x 720, progressive

+ 10801
= Resolution: 1920 x 1080, interlaced

o 1080p
= Resolution: 1920 x 1080, progressive

odd field

Interlaced
Video

Frame
even field




Digital Bit Rates

+ A picture is worth a thousand words?

¢ Size of a typical color image
= For display
= 640 x 480 x 24 bits = 7372800 bits = 92160 bytes
* For current mainstream digital camera
= 2560 x 1920 x 24 bits = 117964800 bits = 14745600 bytes
= For an average word
= 6 characters/word, 7 bits/character: 42 bits ~= 5 bytes

+ Bit rate: bits per second for transmission
= Raw digital video (DVD format)
= 720 x 480 x 24 x 24 frames: ~200 Mbps
= CD Music
e = 44100 samples/second x 16 bits/sample = 689 kbps
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Error or Similarity Measures

Mean Square Error (MSE) |
L, -norm error : MSE = ﬁz U
i=0
Mean Absolute Difference (MAD)

N -1
L, -norm error : MAD = s Eq
N 5
Max Error

L_ -norm error : MaxError = m_ax{E
Peak Signal-to-Noise Ratio (PSNR)
M 2
PSNR =10log,, ———;
10 MSE

M = maximum peak - to - peak value
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| Outline |

+ Review of information theory

+ Fixed-length codes
= ASCII

+ Variable-length codes
= Morse code
= Shannon-Fano code
= Huffman code
= Arithmetic code

+ Run-length coding



InPutation Thegry

o A measure of information

* The amount of information in a signal might not
equal to the amount of data 1t produces

* The amount of information about an event is closely
related to 1ts probability of occurrence

¢ Self-information

* The information conveyed by an event A with

probability of occurrence P[A] is I
A

A

|, =log, L =—log, P[A]

P[A]




Eatony

+ Entropy

= Average amount of information of a source, more precisely,
the average number of bits of information required to
C represent the symbols the source produces

= For a source containing N independent symbols, its entropy
1s defined as

H = _Z P[Xi ]10g2 P[Xi]

N
=1

= Unit of entropy: bits/symbol

= C. E. Shannon, “A mathematical theory of communication,”
N Bell Systems Technical Journal, 1948




Entropy Example

* Fmd and plot the entropy of the binary code 1n
which the probability of occurrence for the
symbol 1 1s p and for the symbol 0 1s 1-p

2 I'H
H ==Y P[X, Jlog, P[X;] 1F
=i

=—plog, p—(1-p)log,(1-p)

GERT2 170
T

| = |
=—=—>H=—"1log,———1o = _— +— =1Dbit/symbol
P=3 ) By Ty PRy T Ty ]
p—l:> H = 110 l—élo 3—O 8113 bits/symbol
A A g24 A g24 : Vi

p=0=H =-0log, 0—-1log, 1 =0 bit/symbol



_Entropy Example

+ Find the entropy of a DNA sequence containing four
equally-likely symbols {A,C,T,G}

o H = (—%log2 %j x4 =log, 4 = 2 bits/symbol

« P[A]=1/2; P[C]=1/4: P[T]=P[G]=1/8; H=?

Je4:1 1l 1
H :—llogzl—llogz———logz———logz—

'8 2" 4 4 8 8§ 8 8

i + ak + 2 + ihs s bits/symbol < 2 bits/symbol

Dy s2sssFEsrE

ey + So, how do we design codes to represent DNA sequences?




Fixed-Length Codes

+ Properties

= Use the same number of bits to represent all possible
symbols produced by the source

= Simplify the decoding process

+ Examples

= American Standard Code for Information Interchange
(ASCII) code

= Bar codes
= One used by the US Postal Service
= Universal Product Code (UPC) on products in stores
= Credit card codes



ASCII Code.

o ASCII 1s used to encode and communicate alphanumeric
characters for plain text

+ 128 common characters: lower-case and upper-case letters,
o numbers, punctuation marks... 7 bits per character

o First 32 are control characters (for example, for printer
control)

+ Since a byte 1s a common structured unit of computers, it 1s
common to use 8 bits per character — there are an additional
128 special symbols

o Example

Character 5 Y 0 . 4 4 3
ﬁf Dec. index 53 50 48 46 52 52 51

Bin. code 00110101 00110010 00110000 00101110 00110100 00110100 00110011




ASCII Table

Dec HxOct Char Dec Hx Oct Html Chr_ |Dec Hx Oct Htrnl Chr| Dec Hx Oct Html Chr
0 0 000 NUL (nmll) 32 20 040 &#32; Space| 64 40 100 «#64; B | 96 60 140 &#96;
1 1 001 50H (start of heading) 33 21 041 «#33; ! 65 41 101 «#65; & 97 61 141 &«#97:; a
2 2 002 STX (start of text) 34 22 042 «#34:; " 66 42 102 «#66; B | 98 62 142 &«#96; Db
3 3 003 ETX (end of text) 35 23 043 s#35; # 67 43 103 «#67; C | 99 63 143 &#99; cC
4 4 004 EOT (end of transmission) 36 24 044 <#36; § 68 44 104 «#68; D |100 64 144 &#1l00; d
5 5 005 ENQ (enquiry) 37 25 045 &#37: % 69 45 105 &«#69; E |101 65 145 &#101; e
6 6 006 ACK {acknowledge) 38 26 046 £#38; « 70 46 106 &«#70; F |102 66 146 &«#l02; £
7 7 007 BEL (bell) 39 27 047 s#39; ' 71 47 107 «#71; G |103 67 147 &«#103:; g
8 8 010 BS (backspace) 40 28 050 &«#40; | 72 48 110 «#72; H |104 68 150 &«#104; h
9 9 011 TAB (horizontal tab) 41 29 051 &«#41; ) 73 49 111 «#73; I |105 69 151 &#105; i

10 A 012 LF (NL line feed, new line)| 42 2A 052 &«#42; 7 74 4A 112 «#74: J |106 6A 152 &#106: ]

11 B 013 VT (wertical tab) 43 ZB 053 «#43; + 75 4B 113 «#75: K |107 6B 153 «#107: k

12 C 014 FF (NP form feed, new page)| 44 2C 054 &#44; , 76 4C 114 «#76; L |108 6C 154 &#108;: 1

13 D 015 CR (carriage return) 45 2D 055 &«#45; - 77 4D 115 «#77:; M |109 6D 155 &«#109; 1

14 E 016 50 (shift out) 46 2E 056 &«#46; . 78 4E 116 4«#78; N |110 6E 156 &«#110; n

15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#lll: O

16 10 020 DLE (data link escape) 48 30 060 &«#46; 0 80 50 120 «#80: P |112 70 160 &#112: D

17 11 021 DCl (device control 1) 49 31 061 «#49; 1 81 51 121 «#81; 0 |113 71 161 &#113: q

18 12 022 DCZ (device control 2) 50 32 062 &#50; 2 g2 52 122 «#82; R |114 72 162 &#ll4: &

19 13 023 DC3 (device control 3) 51 33 063 &#51; 3 83 53 123 &#83: 5 |115 73 163 &#115; s

20 14 024 DC4 (dewice control 4) £E2 34 064 &#52: 4 84 54 124 «#84: T |116 74 164 &#ll6: T

2l 15 025 NAE (negative acknowledge) 53 35 065 4#53; 5 85 55 125 &#85: U |117 75 165 &«#117: u

22 16 026 5YN (synchronous idle) 54 36 066 s#54; 6 86 56 126 «#86; V |l18 76 166 &#118; v

23 17 027 ETE (end of trans. block) 55 37 067 &«#55: 7 87 57 127 «#87; W |119 77 167 &#l19;: w

24 18 030 CAN (cancel) 56 38 070 &«#56; & 88 58 130 &«#88; X |120 78 170 &«#120; X

25 19 031 EM (end of medium) 57 39 071 &#57: 9 89 59 131 «#89; ¥ (121 79 171 &«#121: ¥

26 li& 032 SUB (substitute) 58 3A 072 &«#¥58; : 90 54 132 «#90; Z |122 7A 172 &#122; 2

27 1B 033 ESC (escape) 59 3B 073 &#59; ; 91 SB 133 &«#91: [ |123 7B 173 «#123; {

28 1C 034 F5 (file separator) 60 3C 074 &#60; < 92 5C 134 «#92: % |l124 7C 174 &«#l24;

29 1D 035 G5 (group separator) 61 3D 075 «#6l; = 93 SD 135 &«#93:; ] [125 7D 175 &«#125: )}

30 1E 036 RS (record separator) 62 3E 076 s#62; > 94 SE 136 «#94; ~ |126 7E 176 &#l26; ~

31 1F 037 US (unit separator) 63 3F 077 &«#63; ? 95 SF 137 «#95; _ |127 7F 177 &«#l27; DEL

Source: www.asciitable.com



_Variable-Length Codes

+ Main problem with fixed-length codes: inefficiency
+ Main properties of variable-length codes (VLC)

= Use a different number of bits to represent each symbol

= Allocate shorter-length code-words to symbols that occur
more frequently

» Allocate longer-length code-words to rarely-occurred
symbols

= More efficient representation; good for compression

+ Examples of VLC

= Morse code
= Shannon-Fano code
TRLLD u Hllffman COde

= Arithmetic code




Morse Codes & Telegraphy

Morse codes

¢

o “What hath God wrought?”, DC —
Baltimore, 1844

Im
°
—

+ Allocate shorter codes for more

I
31 = frequently-occurring letters & numbers
H eeee  CH - . : BT
A y o Telegraph 1s a binary communication
} e system — dash: 1; dot: O
V oo B eooe
ARt ST <Transmitter> it
W ° G ile ~ / Paper tape
T e v =3 9 Transmission key - = cn“ ~~~~~~
P e--e X o ;h T SR T i1 Tape muwament
F eeo-o Q --0- ,I.. ,lf"""""'"""l ‘

S patt i
Joesss T ens Y N Do <NECEIVER>
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Optimal efficiency
= How to perform optimal code-word allocation (in an efficiency
standpoint) given a particular signal?
Uniquely decodable
= No confusion allowed 1n the decoding process

= Example: Morse code has a major problem!
= Message: SOS. Morse code: 000111000
= Many possible decoded messages: SOS or VMS?

Instantaneously decipherable

= Able to decipher as we go along without waiting for the entire
message to arrive

Algorithmic issues
= Systematic design?
= Simple fast encoding and decoding algorithms?



VLC Example

Prob. FLC Codel | Code2 | Code3 | Code4
P[AI=1/2 | 000 1 1 0 00
P[B]=1/4 | 001 01 10 10 01
C | P[C]=1/8 | 010 001 100 110 10
D |P[D=1/16| 011 0001 1000 1110 11
E | P[E=1/16 | 100 | 00001 | 10000 | 1111 110
A
e A 0/16 3 311650 31/ 164 REEDI6T | B3l
Length
N
H =—Z P[X; Jlog, P[X;] Codel:
1 B e N2 1 E[L]:1><l+2><l—|—3><1-|—4><L
==l ellgp s o S Suloy £ 5 2h s b3 b ISR K RIO
D Gk 8 e 16
+5x— = L its / symbol
' MY PRt blts/symbol 16 16
AR TR




VLC Example

1L

Prob. FLC Codel | Code2 | Code3 | Code4

P[A]=1/2 | 000 1 1 0 00

P[B]=1/4 | 001 01 10 10 01

c | plc=18 | o010 001 100 110 10

D |PD]=1/16| o011 0001 1000 | 1110 11

E | P[EI=1/16 | 100 | 00001 | 10000 | 1111 110
iiiztie H=30/16 3 311650 31/ 164 REEDI6T | B3l

+ Uniquely decodable — Self-synchronizing: Code 1, 2, 3.
No confusion in decoding

+ Instantaneous: Code 1, 3. No need to look ahead.

¢ Prefix condition
no codeword 1s a prefix of another

= uniquely decodable & instantaneous:




Shannon-Fano Code

o Algorithm

= Line up symbols by decreasing probability of occurrence

= Divide symbols into 2 groups so that both have similar
combined probability

= Assign 0 to 1%t group and 1 to the 2nd
= Repeat step 2

+ Example H=2.2328 bits/symbol
Symbols Prob. Code-word
A 0.35 00 Average code-word length =
B 0.17 01 0.35x2+0.17x2+0.17x2
C 0.17 10 +0.16x3+0.15x3
D 0.16 110 = 2.31 bits/symbol
E 0.15 111




Huffman Code

+ Shannon-Fano code [1949]

* Top-down algorithm: assigning code from most
frequent to least frequent

= VLC, uniquely & instantaneously decodable (no
code-word 1s a prefix of another)

= Unfortunately not optimal in term of minimum
redundancy

+ Huffman code [1952]

= Quite similar to Shannon-Fano in VLC concept

= Bottom-up algorithm: assigning code from least
frequent to most frequent

* Minimum redundancy when probabilities of
i occurrence are powers-of-two

* In JPEG 1images, DVD movies, MP3 music




Huffman Coding Algorithm

+ Encoding algorithm
= Order the symbols by decreasing probabilities

= Starting from the bottom, assign O to the least probable
symbol and 1 to the next least probable

e = Combine the two least probable symbols into one
composite symbol

= Reorder the list with the composite symbol
= Repeat Step 2 until only two symbols remain in the list

+ Huffman tree
= Nodes: symbols or composite symbols
= Branches: from each node, 0 defines one branch while 1
defines the other
+ Decoding algorithm

= Start at the root, follow the branches based on the bits
L received

= When a leaf 1s reached, a symbol has just been decoded

L_eaves




Huffman Coding Example

Symbols Prob. Symbols Prob. Symbols Prob.

A 0.35 A 0.35 A 0.35
B 07 EEE)p DE 031 mmmp [BC 034 |1
o C 0.17 B 0.17 | 1 DE 0.31 |0
D 0.16 | 1 C 0.17 |10
E 0150 1
Huffman Tree
Symbols Prob.
BCDE 0.65 1
B A 0.35 0
C
D
w'e e U Average code-word length = E[L] =

0.35x 1 + 0.65 x 3 = 2.30 bits/symbol




Huffman Coding Example

Symbols Prob. Symbols Prob. Symbols Prob.

A 1/2 A 1/2 A 1/2

B 1/4 mEEp B 1/4 mmmp B 1/4
T C 1/8 C 1/8 |0 CDE 1/4 |1

D 1/16 | ( DE 1/8 |1

EEREe) | 1

Huffman Codes Huffman Tree

A 0 Symbols Prob.

B 10 A 172 0

C 110 BCDE 12 1

D 1110

E 1111

Average code-word length = E[L] =
.ﬂ. 05x1+0.25x2+0.125x 3 + 0.125 x 4 = 1.875 bits/symbol =




¢
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_Huffman Shortcomings

Difficult to make adaptive to 1data changes
Only optimal when P[X;]= o
Best achievable bit-rate = 1 bit/symbol

Question: What happens 1f we only have 2 symbols
to deal with? A binary source with skewed statistics?
= Example: P[0]=0.9375; P[1]=0.0625.
H = 0.3373 bits/symbol. Huffman: E[L] = 1.

= One solution: combining symbols!




S H

& symbols Prob. Symbols  Prob.

A=0 15/16 ' AA 225/256
= B=1 1/16 AB 15/256
sit! BA 15/256

H=0.3373 bits/symbol BB 1/256

H=0.6746 bits/symbol

o Larger grouping yield better performance
+ Problems

= Storage for codes

= [Inefficient & time-consuming

= Still not well-adaptive

E Average code-word length = E[L] =1 x 225/256 + 2 x 15/256
4. +3x15/256 +3 x1/256 = 1.1836 bits/symbol >> 2




Arithmetic Coding: Main Idea

+ Peter Elias in Robert Fano’s class!

o Large grouping improves coding performance; however, we
do not want to generate codes for all possible sequences

T ¢ WlSh hSt

= atag (unique i1dentifier) 1s generated for the sequence to be encoded

= easy to adapt to statistic collected so far
= more efficient than Huffman

+ Main Idea: tag the sequence to be encoded with a number 1n
the unit interval [0, 1) and send that number to the decoder

+ Review: binary representation of fractions
« 0.75,=0.5+025=2"+27=0.11,

= 0.384765625,=22+27+27+27 =0.011000101,




L Sgng Brampy

Symbol Probability | Huffman Code

X1 0.05 10101

X2 0.2 01

X3 0.1 100

X4 0.05 10100

X5 0.3 11

X6 0.2 00

X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

Huffman: 01 01 100 100 00 11 1011 18 bits




Arithmetic Encoding Process

T 0 25 Ol 074 0. 0714 0. 07136 0.071336 0.0713360
0.904X7 /1 1 g B - 'tX7 1 X7
X6 / S X6 § X6
X5’ X5 X5
0.251 4 Ll
X2 X2 < = \ | X2
D R [ g s k: 1 X1
0 05 0. 06 0.070 0.0710 0.07128 0.071312 0.0713336
String to encode: X2 X2 X3 X3 X6 X5 X7 Sym | Prob | Huffman
range = high — low X1 | 0.05 10101
new_high = low + range x subinterval high x2 | 02 01
new_low = low+range x subinterval low <3 | 01 100
Final interval = [0.0713336,0.0713360) 16 bits X4 | 0.05 10100
Send to decoder: 0.07133483886719 X5 0.3 11
27427 4+27%+27° 4279 =0.0001001001000011, [ x¢ | 02 00
X7 0.1 1011




Arnthmetic Decoding Process

¢ low=0; high=1; range=high — low
« REPEAT

=  Find index 1 such that

. value —low : .
subinterval low < <subinterval high

range

= OUTPUT SYMBOL

= high = low + range x subinterval high

= low = low + range x subinterval low } UPDATE
= range = high — low

« UNTIL END




Arithmetic Decoding Example

1o 025 0;_1 0074 00714 007136 0071336 0.0713360

’
’
/ ’ / - 2
é L A A 7" / . . P L -
7 7 ’ /’ 'l
’ ’ ’ ’ & P
. \
’ ’ ’ ’ - 8
’ ’ 4 U o7 \
’ ’ 4 g - Q
/ / ’ // 2 \
’ ’ 4 - 3
’ . ’ L ’ L ’ i - L i
0 ’ ’ 3 \

070+ , , , \ \

X5 ,/ % gk N X5 b &

Tl 0 W < ¥ ¥ SR s {7,

07 kXx3 7 ] {5l D s S Rl (A & S L 1X3
X2 X2 L [ X2

0.0 %t I T = 1 I IX]

0 0.05 006 0070 0.0710 0.07128 0.071312 0.0713336

low =0;high =1;range =0
0.071334...—-0 0.071334...—-0.05

2 005 < <025=X, 005 <= e~ —(.1067<025= X,
i 1 0.20

» high=0+1x0.25=0.25 high =0.05+0.2x0.25=0.1
low=0+1x0.05=0.05 low=0.05+0.2x0.05=0.06

025 < S5t S0 Ty o0y 085S X

0.04




Adaptive Arithmetic Coding

o Three symbols {A, B, C}. Encode: BCCB... | ”
- 0.6 L 0.666 _____ 0.666 e
5 T IP[C]=1/4
P[C]=1/3 75%..\\[ ] P[C]=2/5 [C]=1/2
’ S N 60%t
CA P[BI=1/3 P[B]:\\\I/Z 50%T
33%4 e b b PIBIES/ P[B]=1/3
0 ] e | 20‘V 7
- oT 1 % T
[A] . [PARYA T Iprar=1/5 2 TprAJ=1/6
0 0333 0.5834 0.6334

Final interval = [0.6390, 0.6501)
output = 0.6396,, =
27 +27 427 +270 427 +27° =0.1010001111,

Decode?




Arnthmetic Coding: Notes

¢ Size of finalinterval =] | P[X;]

o Symbol X, of probability P[X. ]contributes
log, P[Xi ]bits to the output

¢ Arithmetic coding approaches entropy!
o Near-optimal: finite-precision arithmetic, a whole
number of bits or bytes must be sent

+ Implementation issues:

= Incremental output: should not wait until the end of the
compressed bit-stream; prefer incremental transmission scheme

= Prefer integer implementations by appropriate scaling




Run-Length Coding

+ Main idea
* Encoding long runs of a single symbol by the length of the run

+ Properties
= A lossless coding scheme
= Qur first attempt at inter-symbol coding

= Really effective with transform-based coding since the transform
usually produces long runs of insignificant coefficients

= Run-length coding can be combined with other entropy coding

techniques (for example, run-length and Huffman coding in
JPEG)




Run-Length Coding

+ Example: How do we encode the following string?

14 zeros 37 zeros
N N

r

140050-30000010:-0--=10--0

+ Run-length coding:

b= A(ru/n-length, size) binary amplitude value
A% number of consecutive zeros

actual value of the

before current non-zero symbol =
non-zero symbol in binary

number of bits needed to
encode this non-zero symbol

it 04)14 (2,3)5 (1,2)-3 (5,1) 1 (14,1)-1 (0,0)




Run-Length Coding

14 zeros 37 zeros
N\ N\,

r

Rl ATt VO e e PN B (R

always 1, no

= (run-length, size) binary value Heed\to e?COde
TN h Sign blt MXB cee LSB
o, 0: positive /

1: negative

' 4 000
. S ad 2SIZG—1, S > 0
binary of S = ; 3 01
& ‘S : otherwise 5 i
S 0914 ) ()3 GD1 a4 0010
. Huffman or raw binary 3 11
arithmetic coding -4 100




Quantization

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore, MD 21218



:Ol_rltli"ne:

¢ Review

+ Quantization
= Nonlinear mapping
= Forward and inverse quantization
= (Quantization errors
= Clipping error
= Approximation error
* Error model

= Optimal scalar quantization

= Examples




———————————————————————————————————

original
= — T
signal :
compressed
- bit-stream
reconstructed T ’
signal

Information theory
VLC

Quantization Huffman
Arithmetic
Run-length




Quantization

+ Entropy coding techniques
* Perform lossless coding
= No flexibility or trade-off in bit-rate versus distortion

+ Quantization

= Lossy non-linear mapping operation: a range of
amplitude 1s mapped to a unique level or codeword

= Approximation of a signal source using a finite
collection of discrete amplitudes

= (Controls the rate-distortion trade-off
= Applications
= A/D conversion

= Compression




~Typical Quantizer

Forward Quantizer

X E Ii _[ [ 19X)

. X

I.e., I {X| 1_X<X} .j_y
1nput output

= ‘R /
y A
1114 quantization level
1104  or codeword I
101 / clipping/overflow
100 Y.
011 — A, = quantization stepsize
P quantization cell/bin/interval
001 /
Ik | | | | > X

decision boundaries

clipping/overflow



Typical Inverse Quantizer

+ Typical reconstructAlon X+ % | n
K= y - X
|
. . 2
+ Quantization error

g=X-X Inverse Quantizer

yA
| 2 N
110 —

101 —
100 — yi

oYt
010

001 — ),Zi—l )’z
| | | | R
/ — _O— o— o o' oo o

decision boundaries

S clipping, overflow



Mid-rise versus Mid-tread

Y ;
A y
S A
_Xmax X| X _Xmax X
oo 0o — -~
Xmax )’Zi max
)’Zi

Uniform Midrise Quantizer Uniform Midtread Quantizer

¢ Popular in ADC + Popular in compression
o For a b-bit midrise + For a b-bit midtread
2 X 2X




Quantization Errors

¢ Approximation error

= Lack of quantization resolution, too few

\FE quantization levels, too large quantization step-size f\l
Gt = Causes staircase effect %
= Solution: increases the number of quantization W

levels, and hence, increase the bit-rate

+ Clipping error

= Inadequate quantizer range limits, also known as A A
overflow h [ﬂ P\
= Solution ,J ‘d P \
= Requires knowledge of the input signal \/

= Typical practical range for a zero-mean signal
Xmax 3 4XRMS

TR 1 = 2
X .= =A% XrMs _\/?jo X~ (t)dt

min




Quantization: Error Model

¢ Assumptions:
x RV with PDF f,(x)

y RV; X RV
g 0-mean RV independent of X

AN
X
—

+ Quantization error:
X=X+(Q=>(0=X—X

v <>

+ Mean-squared distortion measure:
D(x,%) = E[(X=X)"]= E[(X=%)"]

%/_/

function of X

2 . . .
] = E[Q° ] = quantization error variance




Quantization Error Variance

Y
q

D(X,X) = E[(x—%)*] = j_i(x — %)% f, (X)dx

v <>

- j (X= %) f, (x)dX + jf(x RS )X e

L Xk+1 ~
:ZL (x—%)>f, (x)dx
k=1 K

would like to minimize




Umform Quantlzatlon Bounded Input

y A Bounded mput: —X < X<X
° A Xl + Xl—l
Sy e Center reconstruction : X, = 5
|
0 00— X A A
ax Error bound: — 5 < q < 5

b-bit Quantizer

ﬂk
, T4 (0
1 Q( )

\II\ max A
A A "4
P

hlgh bit-rate ——
assumption 2




Umform Quantlzatlon Bounded Input

- max i fQ (C )

ZHE pINEHES
| [max |y R
S AANRNE bl T E TR

2

i high bit-rate — —
assumption 2

D(X,x) = E[q’ =j°° q* fq (q)dq

IM ks ey At L Cs
st AN 360 banT3A\Z) T2 T3 2

Increase b by 1 bit/symbol = double L

= reduce A by a factor of 2




Signal-to-Noise Ratio

¢ Definition of SNR in decibel (dB)

T
SNR; =10log,, —

2
Oq +——— power of the noise

power of the signal

+ For quantization noise
2
120,

SNR =10log,, TR 10log,, 126 —20log,, A

Suppose that we now add 1 more bit to our Q resolution:

Av= % — SNR, =10log,, 120 —201log,, A’

= SNR, =10log,, 120 —201log,, A+201log,, 2
= SNR; +20log,, 2
= SNR,; ~ SNR, +6dB




Example

Design a 3-bit uniform quantizer for a signal with range [0,128]

+ Maximum possible number of levels: L =2°=8

. h . Xl — X TNt
¢ Quantization stepsize: A =20 = =16

L 8
+ Quantization levels: Y. = {0,1,2,3,4,5,6,7}

+ Reconstruction levels: X ={8,24,40,56,72,88,104,120}

+« Maximum quantization error: |q| <38




Examgle “of __Populﬂar Qu?ntjzaﬁon

¢ Round

y = round (X)

+ Floor

= nearest integer to X

y = floor(x) =| x | = largest integer smaller than X

o Ceiling

y =cell(x) = |_X_| = smallest integer larger than X

X

| min

y 1 y = round(
X. X=AxY
o4 ST
A= Xmax

——

(g

Uniform midtread quantizer from Round and Floor



Quantlzatlon from Roundmg

Bounded input : x € (~16,16)

A=4; y= round(%); X=4y

yA A:4
— ——
| . | . I_._I . | >
—14 —10.—6 = 6 ‘10‘14 X

Uniform Quantizer, step-size=4




Optimal Scalar Quantization

¢+ Problem Statement:
X RV with known PDF f, (x)

Find x, &X, such that D(X,X) is minimized

+ Optimal Encoder for a Given Decoder:
Given X, , find X, such that D(X,X) is minimized

L Xk+1 A
Minimize D(X,X) = §:j (x=%)2f, 0dX w.rt X,
k=l ° K

+ Notes:

= Non-uniform quantizer under consideration

e = Reconstruction can be anywhere, not necessarily
the center of the interval




Optimal Scalar Quantization

L Xk+1 A
Minimize D(%,%) = [ " (x=&)*f, ()dx w.rt X,
k=1 K

5 5 2 Xk 11
— D(R,X)= — X—X, ) f, (x)dx
Bl 5xk{§ka( )7 Fx (%) }

o Xy N X+1 A
i 5Tk{ J'Xkl (X=X, f, (x)dx + _[Xk (x—%)°f, (x)dx}

Fundamental Theorem of Calculus

X d d ex
F(X) = jc f(©)dt = F () :d—xjc f(t)dt = f(x)
= (Xk ] )A(k—1)2 fx (Xk)_ (Xk - )A(k)z fx (Xk) =0
L ¢ . Nearest
l = X, — X, + X, — %, =0=|x, =—+L—F | Neighbor
2 Rule




Optimal Scalar Quantization

+ Optimal Decoder for a Given Encoder:
Given X, find X, such that D(X,X) is minimized

k+1

‘ Minimize D(X, X) = Z J‘ X—X)°f, (X)dx wurt X,

5 5 = Xk +1
D(X,X) = X — X, ) f, (x)dx
i &k{;ka( O Fx (%) }

= Xk+1 > O o) k+1 =
= 5 (x X, ) f, (x)dx = ka 2(x =X, ) f, (x)dx =
Xk xf, (x)dx — j % f, (x)dx =0
o Optimal reconstruc tion
j X f, (x)dx : e .
] =l %, = Centroid value X, is the centroid
.[x b f (X)dX Rule Of 1:X(X) in [Xk’ Xk+1]




Lloyd-Max Quantizer

+ Unfortunately, we need X, to solve for x,

and x, to solve for x, !

(). + Main idea [Lloyd 1957] [Max 1960]

= solving these 2 equation iteratively until D converges

:': Input Codebook Nearest Crentines] Updated Codebook
C | Neighbor Computation C g
rT: Partitioning b =
index of m-th iteration

o Assumptions
= Input PDF is known and stationary
= Entropy has not been taken into account




S e
xe dx = —

[e~dx = —le‘iX 4-C
’ A

—AX

gy (Ax+1)+C

24

(Aa+1)

1

1 —/a

:Z(ﬂ,a-l-l):




ﬂ* —AlX A
fy (X) :Ee 4 y
‘b =50 X
@ 3 .—>b
X,
Centroid Rule : b =a +%
0+b > b 1 1 1

Nearest Neighbor Rule : a =

TR EE =t =
2 2 A A

4 Distortion : D = [ (x=0) f, ()dx +2[ " (x=b)” f, (X)X




_Embedded Quantization.

A
v

S | MSB oo LSB F1 F2
y Discard N integer bit planes
+ all fractional bit planes

o Also called bit-plane quantization, progressive quantization

¢ Most significant information 1s transmitted first

o JPEG2000 quantization strategy




Embedded Eorward Quanﬁzaﬁon

Bounded input : X € (-

I.I.I.I

16,16)

y 1

foy N=2 least significant bit planes discarded

A=2"

—16-=12 87554 4

Dead Zone

8

By 1628

Embedded Quantizer, N=2



Embedded Inverse Quantization

1 1 1 1

0 X 0 0

1 X X 1

1 X X X

0 X X X
Original Truncate Receive 1 Receive 2
symbol 4 bit planes refinement bit  refinement bits
X =22 Range=[16,32) Range=[16,24) Range=[20, 24)

e — 24 = 4 — 20 + 2

+ N-bit-plane truncation = scalar quantization with A =2"




Vector Quantization

+ N-dimensional generalization of scalar quantizer
o« Q: B">C

[ L5 o

n-dimensional  codebook, containing
input vectors code-vectors or codewords

+ Nearest neighbor and centroid rule still apply

A X2 ER 2 A X2

(o O O O O
@ ( @® )
Q- @ )?1 @ @ @ )?1
i O O
A
L) O O O O
: Separable

Vector Q Scalar Q

m2




	Review
	Outline
	Deterministic versus Random
	Probability
	Important Properties
	Probability Examples
	Conditional Probability
	Random Variable
	Probability Density Function
	PDF Examples
	Discrete Random Variable
	Expectation
	Cross Correlation & Covariance
	Independence & Correlation
	Random Process
	Wide-Sense Stationary
	White Random Process
	Stochastic Signal Model
	Continuous & Discrete Representations
	Multi-Dimensional Digital Signals
	Popular Signal Formats
	Popular Signal Formats
	High-Definition Television (HDTV)
	Digital Bit Rates
	Error or Similarity Measures
	Variable Length Coding: Introduction to �Lossless Compression
	Outline
	Information Theory
	Entropy
	Entropy Example
	Entropy Example
	Fixed-Length Codes
	ASCII Code
	ASCII Table
	Variable-Length Codes
	Morse Codes & Telegraphy
	Issues in VLC Design
	VLC Example
	VLC Example
	Shannon-Fano Code
	Huffman Code
	Huffman Coding Algorithm
	Huffman Coding Example
	Huffman Coding Example
	Huffman Shortcomings
	Extended Huffman Code
	Arithmetic Coding: Main Idea
	Coding Example
	Arithmetic Encoding Process
	Arithmetic Decoding Process
	Arithmetic Decoding Example
	Adaptive Arithmetic Coding
	Arithmetic Coding: Notes
	Run-Length Coding
	Run-Length Coding
	Run-Length Coding
	Quantization
	Outline
	Reminder
	Quantization
	Typical Quantizer
	Typical Inverse Quantizer
	Mid-rise versus Mid-tread
	Quantization Errors
	Quantization: Error Model
	Quantization Error Variance
	Uniform Quantization – Bounded Input
	Uniform Quantization – Bounded Input
	Signal-to-Noise Ratio
	Example
	Example of Popular Quantization
	Quantization from Rounding
	Optimal Scalar Quantization
	Optimal Scalar Quantization
	Optimal Scalar Quantization
	Lloyd-Max Quantizer
	Example
	Example
	Embedded Quantization
	Embedded Forward Quantization
	Embedded Inverse Quantization
	Vector Quantization

