
ReviewReview

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore, MD 21218

OutlineOutline
Review of probability

Definition, properties, examples
Random variable
Random process
Signal modeling via random process

Multimedia signal properties & formats
Digital signals
Image/video signals: properties & formats
Color space
Error & similarity measurements

Deterministic versus RandomDeterministic versus Random

Deterministic
Signals whose values can be specified explicitly
Example: a sinusoid

Random
Digital signals in practice can be treated as a
collection of random variables or a random process
The symbols which occur randomly carry information

Probability theory
The study of random outcomes/events
Use mathematics to capture behavior of random
outcomes and events

ProbabilityProbability

Events and outcomes
Let X be an event with N possible mutually
exclusive outcomes
Example

A coin toss is an event with 2 outcomes:
Head (H) or Tail (T)
A dice toss is an event with 6 outcomes:
{1,2,3,4,5,6}

Probability
The likelihood of observing a particular
outcome above
Standard notation

{ }NXXX ,,, 21 K

iX
[]iXXP =

Important PropertiesImportant Properties
Probability computation or estimation

Basic properties
Every probability measure lies inclusively between 0 and 1

Sum of probabilities of all outcomes is unity:

For N equally likely outcomes

For two statistically independent event

[]
outcomes ofnumber total

 outcomes possible ofnumber i

total

i
i

X
N
NXXP ===

[] iXXP i ∀≤=≤ ,10

[]∑
=

==
N

i
iXXP

1
1

[] [] []
N

XXPXXPXXP N
1

21 ======= L

[] [] []BPAPABP =

Probability ExamplesProbability Examples
Fair coin flip

Tossing two honest coins: what is the probability of
observing two heads or two tails?

Poker game with a standard deck of 52 cards, what
is the probability of getting a 5-card heart flush?

[] []
2
101 ==== XPXP

Four equally likely outcomes
{ }11,10,01,00 []

2
111or 00 =P

Possible flush outcome 1287
!5!8
!13

5
13

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Total possible outcome
2598960

!5!47
!52

5
52

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
[] %0495.0flushheart =P

Conditional ProbabilityConditional Probability

Conditional probability of an event A assuming
that event B has occurred, denoted P[A|B], equals

Bayes’ Rule:

Independent events:

[] []
[]BP

BAPBAP ∩
=|

[] [] []
[]BP

ABPAPBAP || =

[] [] [] [] []APBPBAPBPBAP ==∩ |

Random VariableRandom Variable
Random variable (RV)

A random variable X is a mapping which
assigns a real number x to each possible
outcome of a random experiment
A random variable X takes on a value x from a
given set. Thus it is simply an event whose
outcomes have numerical values
Examples

X in coin toss, X=1 for Head, X=0 for Tail
The temperature outside Barton Hall at any
moment t
The pixel value at location x, y in frame n
of a future Hollywood blockbuster

x

ξ

ξ
ℜ

Ω

Probability Density FunctionProbability Density Function

Probability density function (PDF) of a RV X
Function defined such that:

Histogram of X !!!
Main properties:

)(xf X

[] dxxfxXxP
x

x
X∫=≤≤

2

1

)(21

xxf X ∀≥ ,0)(

1)(=∫
∞

∞−

dxxf X

PDF ExamplesPDF Examples

0 b xa

⎩
⎨
⎧ ≤≤−

=
otherwise

bxaba
xf X ,0

),/(1
)(

ab −
1

Uniform PDF

x

22 2/)(

2
1)(σμ

πσ
−−= x

X exf

μ
Gaussian PDF

x

σμ

σ
/2

2
1)(−−= x

X exf

μ
Laplacian PDF

Discrete Random VariableDiscrete Random Variable

RV that takes on discrete values only
PDF of discrete RV = discrete histogram
Example: how many Heads in 3 independent
coin tosses?

x

)(xf X

0 1 2 3

1/8

3/8 3/8

1/8

[] []kkXk
k

kXX xXPxPxxxPxf ==−=∑)(h wit)()(δ

ExpectationExpectation

Expected value
Let g(X) be a function of RV X. The expected value
of g(X) is defined as

Expectation is linear!
Expectation of a deterministic constant is itself:

Mean
Mean-square value
Variance

()[] () ()dxxfxgXgE X∫
∞

∞−
=

[]CE C=
[] ()dxxfxXE XX ∫

∞

∞−
==μ

[]2XE
()[]22

XX XE μσ −=

[] 222
XXXE μσ +=

Cross Correlation & CovarianceCross Correlation & Covariance

Cross correlation
X, Y: 2 jointly distributed RVs
Joint PDF:

Expectation:

Cross-correlation:

Cross covariance

[] ∫ ∫=≤≤≤≤
2

1

2

1

),(, 2121

y

y

x

x
XY dxdyyxfyYyxXxP

()[] ()∫ ∫
∞

∞−

∞

∞−

= dxdyyxfyxgYXgE XY),(,,

[]XYERXY ≡

()()[]YXXY YXEC μμ −−≡

YXXYXY CR μμ+=⇒

Independence & CorrelationIndependence & Correlation

Marginal PDF:

Statistically independent:

Uncorrelated:

Orthogonal:

() ()dyyxfxf XYX ∫
∞

∞−
= ,

() ()dxyxfyf XYY ∫
∞

∞−
= ,

() () ()yfxfyxf YXXY =,

[] [] [] 0 .. , == XYCeiYEXEXYE

[] 0=XYE
with 0-mean RVs

Random ProcessRandom Process
Random process (RP)

A collection of RVs
A time-dependent RV
Denoted {X[n]}, {X(t)} or simply X[n], X(t)
We need N-dimensional joint PDF to characterize X[n]!
Note: the RVs made up a RP may be dependent or
correlated
Examples:

Temperature X(t) outside Barton Hall
A sequence of binary numbers transmitted over a
communication channel
Speech, music, image, video signals

WideWide--Sense StationarySense Stationary
Wide-sense stationary (WSS) random process (RP)

A WSS RP is one for which E[X[n]] is independent of n
and only depends on the
difference (m – n)

Mean:
Auto-correlation sequence:
Energy:

Variance:

Co-variance:

() [] [][]nXmXEnmR ≡,

[][]nXEmX =
() [] [][]knXnXEkRXX −=

[][] ()02
XXRnXE =

[]()[]22
XX mnXE −=σ () 22 0 XXXX mR −=⇒σ

() []() []()[]XXXX mknXmnXEkC −−−=

What happens if the WSS RP has 0-mean?

White Random ProcessWhite Random Process
Power spectral density

The power spectrum of a WSS RP is defined as the
Fourier transform of its auto-correlation sequence

White RP
A RP is said to be white if any pair of samples are
uncorrelated, i.e.,

White WSS RP

White 0-mean WSS RP

() ()∑ −=
k

kj
XX

j
XX ekReS ωω

[] [][] [][] [][] mmXEnXEmXnXE n≠= ,

()
⎩
⎨
⎧

=+
≠

=
0 ,
0 ,

22

2

km
km

kR
XX

X
XX σ

0

2
Xσ()kRXX

k 0

2
Xσ

()ωj
XX eS

ω

Stochastic Signal ModelStochastic Signal Model

()
∑ =

−−
= N

n
n

n za
zH

1
1

1w[n]

white 0-mean
WSS Gaussian

noise

x[n]

AR(N) signal

For speech: N = 10 to 20
For images: N = 1! and 95.01 =a

Continuous & Discrete RepresentationsContinuous & Discrete Representations

Continuous-Amplitude Discrete-Amplitude

Continuous
-Time
(Space) Local telephone, cassette-tape

recording & playback,
phonograph, photograph telegraph

Discrete
-Time
(Space) Switched capacitor filter,

speech storage chip, half-tone
photography

CD, DVD, cellular phones,
digital camera & camcorder,
digital television, inkjet
printer

t

x(t)

t

x(t)

n

x[n]

n

x[n]

MultiMulti--Dimensional Digital SignalsDimensional Digital Signals
Images: 2-D digital signals

pixel
or
pel

Video Sequences: 3-D digital signals,
a collection of 2-D images called
frames

x

y
t

black
p=0

gray
p=128

white
p=255

colors:
combination
of RGB

Popular Signal FormatsPopular Signal Formats
RGB

Red Green Blue, typically 8-bit per sample for each color plane

YCrCb
Y: luminance, gray-scale component
Cr & Cb: chrominance, color components, less energy than Y
Chrominance components can be down-sampled without much
aliasing

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

128
128
16

439.0291.0148.0
071.0368.0439.0

098.0504.0257.0

C
C
Y

B

R

B
G
R

Y
sample Cr, Cb

sample

Popular Signal FormatsPopular Signal Formats
CIF: Common Intermediate Format

Y resolution: 352 x 288
Cr, Cb resolution: 176 x 144
Frame rate: 30 frames/second progressive
8 bits/pixel(sample)

QCIF: Quarter Common Intermediate Format
Y resolution: 176 x 144
Cr, Cb resolution: 88 x 72
Frame rate: 30 frames/second progressive
8 bits/pixel (sample)

TV – NTSC
Resolution: 704 x 480, 30 frames/second interlaced

DVD – NTSC
Resolution: 720 x 480, 24 – 30 frames/second
progressive

Y

Cr
Cb

Y

Cr
Cb

Frame
n

Frame
n+1

HighHigh--Definition Television (HDTV)Definition Television (HDTV)
720i

Resolution: 1280 x 720, interlaced

720p
Resolution: 1280 x 720, progressive

1080i
Resolution: 1920 x 1080, interlaced

1080p
Resolution: 1920 x 1080, progressive

Interlaced
Video
Frame

odd field

even field

Digital Bit RatesDigital Bit Rates
A picture is worth a thousand words?
Size of a typical color image

For display
640 x 480 x 24 bits = 7372800 bits = 92160 bytes

For current mainstream digital camera
2560 x 1920 x 24 bits = 117964800 bits = 14745600 bytes

For an average word
6 characters/word, 7 bits/character: 42 bits ~= 5 bytes

Bit rate: bits per second for transmission
Raw digital video (DVD format)

720 x 480 x 24 x 24 frames: ~200 Mbps
CD Music

44100 samples/second x 16 bits/sample = 689 kbps

Error or Similarity MeasuresError or Similarity Measures

Mean Square Error (MSE)

Mean Absolute Difference (MAD)

Max Error

Peak Signal-to-Noise Ratio (PSNR)

∑
−

=
⎟
⎠
⎞⎜

⎝
⎛ −=

1

0

2

2
ˆ1:error norm-L

N

i
ii XXE

N
MSE

()∑
−

=

−=
1

0
1

ˆ1:error norm-L
N

i
ii XXE

N
MAD

(){ }iii
XXEMaxError ˆmax:error norm-L −=∞

peak value-to-peak maximum

;log10PSNR
2

10

=

=

M
MSE
M

Variable Length Coding: Introduction to Variable Length Coding: Introduction to
Lossless CompressionLossless Compression

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore, MD 21218

OutlineOutline

Review of information theory
Fixed-length codes

ASCII

Variable-length codes
Morse code
Shannon-Fano code
Huffman code
Arithmetic code

Run-length coding

Information TheoryInformation Theory

A measure of information
The amount of information in a signal might not
equal to the amount of data it produces
The amount of information about an event is closely
related to its probability of occurrence

Self-information
The information conveyed by an event A with
probability of occurrence P[A] is

[] []AP
AP

I A 22 log1log −==

10

AI

[]AP

EntropyEntropy
Entropy

Average amount of information of a source, more precisely,
the average number of bits of information required to
represent the symbols the source produces
For a source containing N independent symbols, its entropy
is defined as

Unit of entropy: bits/symbol
C. E. Shannon, “A mathematical theory of communication,”
Bell Systems Technical Journal, 1948

[] []i
N

1i
i XPXPH 2log∑

=

−=

Entropy ExampleEntropy Example
Find and plot the entropy of the binary code in
which the probability of occurrence for the
symbol 1 is p and for the symbol 0 is 1-p

[] []

() ()pppp

XPXPH i
1i

i

−−−−=

−= ∑
=

1log1log

log

22

2

2

bit/symbol 1
2
1

2
1

2
1log

2
1

2
1log

2
1

2
1

22 =+=−−=⇒= Hp

lbits/symbo 0.8113
4
3log

4
3

4
1log

4
1

4
1

22 =−−=⇒= Hp

bit/symbol 01log10log00 22 =−−=⇒= Hp

0 1 p

1
H

1/2

Entropy ExampleEntropy Example

Find the entropy of a DNA sequence containing four
equally-likely symbols {A,C,T,G}

lbits/symbo 24log4
4
1log

4
1

22 ==×⎟
⎠
⎞

⎜
⎝
⎛−=H

8
1log

8
1

8
1log

8
1

4
1log

4
1

2
1log

2
1

2222 −−−−=H

P[A]=1/2; P[C]=1/4; P[T]=P[G]=1/8; H=?

So, how do we design codes to represent DNA sequences?

lbits/symbo 2lbits/symbo
4
7

8
3

8
3

2
1

2
1

<=+++=

FixedFixed--Length CodesLength Codes
Properties

Use the same number of bits to represent all possible
symbols produced by the source
Simplify the decoding process

Examples
American Standard Code for Information Interchange
(ASCII) code
Bar codes

One used by the US Postal Service
Universal Product Code (UPC) on products in stores
Credit card codes

ASCII CodeASCII Code
ASCII is used to encode and communicate alphanumeric
characters for plain text
128 common characters: lower-case and upper-case letters,
numbers, punctuation marks… 7 bits per character
First 32 are control characters (for example, for printer
control)
Since a byte is a common structured unit of computers, it is
common to use 8 bits per character – there are an additional
128 special symbols
Example

00110011 00110100 00110100 00101110 00110000 00110010 00110101

51 52 52 46 48 50 53
3 4 4 . 0 2 5Character

Dec. index
Bin. code

ASCII TableASCII Table

VariableVariable--Length CodesLength Codes

Main problem with fixed-length codes: inefficiency
Main properties of variable-length codes (VLC)

Use a different number of bits to represent each symbol
Allocate shorter-length code-words to symbols that occur
more frequently
Allocate longer-length code-words to rarely-occurred
symbols
More efficient representation; good for compression

Examples of VLC
Morse code
Shannon-Fano code
Huffman code
Arithmetic code

Morse Codes & TelegraphyMorse Codes & Telegraphy
Morse codes

E • T -

I • • M - -

S • • • O - - -

H • • • • CH - - - -

A • - N - •

U • • - D - • •

V • • • - B - • • •

R • - • K - • -

W • - - G - - •

L • - • • Y - • - -

P • - - • X - • • -

F • • - • Q - - • -

J • - - - C - • - •

“What hath God wrought?”, DC –
Baltimore, 1844
Allocate shorter codes for more
frequently-occurring letters & numbers
Telegraph is a binary communication
system – dash: 1; dot: 0

Issues in VLC DesignIssues in VLC Design
Optimal efficiency

How to perform optimal code-word allocation (in an efficiency
standpoint) given a particular signal?

Uniquely decodable
No confusion allowed in the decoding process
Example: Morse code has a major problem!

Message: SOS. Morse code: 000111000
Many possible decoded messages: SOS or VMS?

Instantaneously decipherable
Able to decipher as we go along without waiting for the entire
message to arrive

Algorithmic issues
Systematic design?
Simple fast encoding and decoding algorithms?

VLC ExampleVLC Example
Symbol Prob. FLC Code 1 Code 2 Code 3 Code 4

A P[A]=1/2 000 1 1 0 00
B P[B]=1/4 001 01 10 10 01
C P[C]=1/8 010 001 100 110 10
D P[D]=1/16 011 0001 1000 1110 11
E P[E]=1/16 100 00001 10000 1111 110

Average
Length

H=30/16 3 31/16 31/16 30/16 33/16

[] []

symbolbits

XPXPH i

N

1i
i

/
8

15
16
30

16
8

8
3

2
1

2
1

16
1log

16
2

8
1log

8
1

4
1log

4
1

2
1log

2
1

log

2222

2

==+++=

−−−−=

−= ∑
=

[]

symbolbits

LE

Code

/
16
31

16
15

16
14

8
13

4
12

2
11

:1

=×+

×+×+×+×=

VLC ExampleVLC Example
Symbol Prob. FLC Code 1 Code 2 Code 3 Code 4

A P[A]=1/2 000 1 1 0 00
B P[B]=1/4 001 01 10 10 01
C P[C]=1/8 010 001 100 110 10
D P[D]=1/16 011 0001 1000 1110 11
E P[E]=1/16 100 00001 10000 1111 110

Average
Length

H=30/16 3 31/16 31/16 30/16 33/16

Uniquely decodable – Self-synchronizing: Code 1, 2, 3.
No confusion in decoding
Instantaneous: Code 1, 3. No need to look ahead.
Prefix condition = uniquely decodable & instantaneous:
no codeword is a prefix of another

ShannonShannon--FanoFano CodeCode
Algorithm

Line up symbols by decreasing probability of occurrence
Divide symbols into 2 groups so that both have similar
combined probability
Assign 0 to 1st group and 1 to the 2nd

Repeat step 2

Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

0
0
1
1
1

0
1
0
1
1

0
1

Code-word
Average code-word length =
0.35 x 2 + 0.17 x 2 + 0.17 x 2

+ 0.16 x 3 + 0.15 x 3
= 2.31 bits/symbol

H=2.2328 bits/symbol

Huffman CodeHuffman Code
Shannon-Fano code [1949]

Top-down algorithm: assigning code from most
frequent to least frequent
VLC, uniquely & instantaneously decodable (no
code-word is a prefix of another)
Unfortunately not optimal in term of minimum
redundancy

Huffman code [1952]
Quite similar to Shannon-Fano in VLC concept
Bottom-up algorithm: assigning code from least
frequent to most frequent
Minimum redundancy when probabilities of
occurrence are powers-of-two
In JPEG images, DVD movies, MP3 music

Huffman Coding AlgorithmHuffman Coding Algorithm
Encoding algorithm

Order the symbols by decreasing probabilities
Starting from the bottom, assign 0 to the least probable
symbol and 1 to the next least probable
Combine the two least probable symbols into one
composite symbol
Reorder the list with the composite symbol
Repeat Step 2 until only two symbols remain in the list

Huffman tree
Nodes: symbols or composite symbols
Branches: from each node, 0 defines one branch while 1
defines the other

Decoding algorithm
Start at the root, follow the branches based on the bits
received
When a leaf is reached, a symbol has just been decoded

Root

1 0
01

Leaves

Node

Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

1
0

Symbols
A
DE
B
C

Prob.
0.35
0.31
0.17
0.17

1
0

Symbols
A
BC
DE

Prob.
0.35
0.34
0.31

1
0

Symbols
BCDE
A

Prob.
0.65
0.35

1
0

01BC DE
01B

C

01

D

E

1 0 ABCDE

Huffman Tree
Huffman Codes

A 0
B 111
C 110
D 101
E 100 Average code-word length = E[L] =

0.35 x 1 + 0.65 x 3 = 2.30 bits/symbol

Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
1/2
1/4
1/8
1/16
1/16

0
1

Symbols
A
B
C
DE

Prob.
1/2
1/4
1/8
1/8

0
1

Symbols
A
B
CDE

Prob.
1/2
1/4
1/4

0
1

Symbols
A
BCDE

Prob.
1/2
1/2

0
1

Huffman Codes
A 0
B 10
C 110
D 1110
E 1111

Average code-word length = E[L] =
0.5 x 1 + 0.25 x 2 + 0.125 x 3 + 0.125 x 4 = 1.875 bits/symbol = H

01CDE B

1
1DE C

E

0

D

1 0
ABCDE

Huffman Tree

0

Huffman ShortcomingsHuffman Shortcomings

Difficult to make adaptive to data changes
Only optimal when
Best achievable bit-rate = 1 bit/symbol

ikiXP
2
1][=

Question: What happens if we only have 2 symbols
to deal with? A binary source with skewed statistics?

Example: P[0]=0.9375; P[1]=0.0625.
H = 0.3373 bits/symbol. Huffman: E[L] = 1.
One solution: combining symbols!

Extended Huffman CodeExtended Huffman Code

Symbols
AA
AB
BA
BB

Prob.
225/256
15/256
15/256
1/256

H=0.6746 bits/symbol

Symbols
A=0
B=1

Prob.
15/16
1/16

H=0.3373 bits/symbol

01
1

BB BA
AB

1 0
AA

Huffman Tree

0

Average code-word length = E[L] = 1 x 225/256 + 2 x 15/256
+ 3 x 15/256 + 3 x 1/256 = 1.1836 bits/symbol >> 2

Larger grouping yield better performance
Problems

Storage for codes
Inefficient & time-consuming
Still not well-adaptive

Arithmetic Coding: Main IdeaArithmetic Coding: Main Idea
Peter Elias in Robert Fano’s class!
Large grouping improves coding performance; however, we
do not want to generate codes for all possible sequences
Wish list

a tag (unique identifier) is generated for the sequence to be encoded
easy to adapt to statistic collected so far
more efficient than Huffman

Main Idea: tag the sequence to be encoded with a number in
the unit interval [0, 1) and send that number to the decoder

Review: binary representation of fractions
2

21
10 11.02225.05.075.0 =+=+= −−

2
9732

10 011000101.02222384765625.0 =+++= −−−−

Coding ExampleCoding Example

Symbol Probability Huffman Code
X1 0.05 10101
X2 0.2 01
X3 0.1 100
X4 0.05 10100
X5 0.3 11
X6 0.2 00
X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

Huffman: 01 01 100 100 00 11 1011 18 bits

Arithmetic Encoding ProcessArithmetic Encoding Process

Sym Prob Huffman
X1 0.05 10101
X2 0.2 01
X3 0.1 100
X4 0.05 10100
X5 0.3 11
X6 0.2 00
X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

range = high – low
new_high = low + range x subinterval_high
new_low = low+range x subinterval_low

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

Send to decoder: 0.07133483886719
2

16151074 0000110001001001.022222 =++++ −−−−−

16 bitsFinal interval = [0.0713336,0.0713360)

Arithmetic Decoding ProcessArithmetic Decoding Process

low=0; high=1; range=high – low
REPEAT

Find index i such that

OUTPUT SYMBOL
high = low + range x subinterval_high
low = low + range x subinterval_low
range = high – low

UNTIL END

l_highsubinterva l_lowsubinterva ≤
−

≤
range

lowvalue

UPDATE

Arithmetic Decoding ExampleArithmetic Decoding Example
X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

05.005.010
25.025.010

X250
1

0...071334.0050

0;1;0

2

=×+=
=×+=

⇒≤
−

≤

===

low
high

. .

rangehighlow

06.005.02.005.0
1.025.02.005.0

X250 1067.0
20.0

05.0...071334.0050 2

=×+=
=×+=

⇒≤=
−

≤

low
high

. .

...X350 2834.0
04.0

06.0...071334.0250 3⇒≤=
−

≤ . .

Adaptive Arithmetic CodingAdaptive Arithmetic Coding
Three symbols {A, B, C}. Encode: BCCB…

A B C

0

33%

66%

1

P[A]=1/3

P[B]=1/3

P[C]=1/3

0.333

0.666

25%

75%

P[A]=1/4

P[B]=1/2

P[C]=1/4

0.5834

0.666

20%

60%

P[A]=1/5

P[B]=2/5

P[C]=2/5

0.6334

0.666

16%

50%

P[A]=1/6

P[B]=1/3

P[C]=1/2

Final interval = [0.6390, 0.6501)

2
1098731

10

1010001111.0222222

6396.0

=+++++

==
−−−−−−

output
Decode?

Arithmetic Coding: NotesArithmetic Coding: Notes

Arithmetic coding approaches entropy!
Near-optimal: finite-precision arithmetic, a whole
number of bits or bytes must be sent
Implementation issues:

Incremental output: should not wait until the end of the
compressed bit-stream; prefer incremental transmission scheme
Prefer integer implementations by appropriate scaling

[]∏=
i

iXP interval final of Size

[]
[] output the tobits log

 scontribute y probabilit of Symbol

2 i

ii

XP
XPX

RunRun--Length CodingLength Coding

Main idea
Encoding long runs of a single symbol by the length of the run

Properties
A lossless coding scheme
Our first attempt at inter-symbol coding
Really effective with transform-based coding since the transform
usually produces long runs of insignificant coefficients
Run-length coding can be combined with other entropy coding
techniques (for example, run-length and Huffman coding in
JPEG)

RunRun--Length CodingLength Coding
Example: How do we encode the following string?

48476
L

48476
L

zeros 37zeros 14

0 0 1 0 0 1 0 0 0 0 0 3 0 5 0 0 14 −−

Run-length coding:
(run-length, size) binary amplitude value

number of consecutive zeros
before current non-zero symbol

number of bits needed to
encode this non-zero symbol

actual value of the
non-zero symbol in binary

(0,4) 14 (2,3) 5 (1,2) -3 (5,1) 1 (14,1) -1 (0,0)

RunRun--Length CodingLength Coding
48476

L
48476

L

zeros 37zeros 14

0 0 1 0 0 1 0 0 0 0 0 3 0 5 0 0 14 −−

(run-length, size) binary value

(0,4) 14 (2,3) 5 (1,2) -3 (5,1) 1 (14,1) -1 (0,0)

sign bit MSB … LSB
0: positive
1: negative

always 1, no
need to encode

4 000
3 01
2 00
1 0
-1 1
-2 10
-3 11
-4 100

⎩
⎨
⎧ >−

=
−

otherwise,
0,2

 ofbinary
1

S
SS

S
size

raw binaryHuffman or
arithmetic coding

QuantizationQuantization

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore, MD 21218

OutlineOutline
Review
Quantization

Nonlinear mapping
Forward and inverse quantization
Quantization errors

Clipping error
Approximation error
Error model

Optimal scalar quantization
Examples

ReminderReminder

reconstructed
signal

original
signal

1−Q

Q

1−T

T
compressed
bit-stream

1−E

E

Information theory
VLC
Huffman
Arithmetic
Run-length

Quantization

QuantizationQuantization
Entropy coding techniques

Perform lossless coding
No flexibility or trade-off in bit-rate versus distortion

Quantization
Lossy non-linear mapping operation: a range of
amplitude is mapped to a unique level or codeword
Approximation of a signal source using a finite
collection of discrete amplitudes
Controls the rate-distortion trade-off
Applications

A/D conversion
Compression

Typical Typical QuantizerQuantizer

x yQ

y

Forward Quantizer

input output

clipping/overflow

clipping/overflow

stepsizeon quantizatiΔ =i

ix1−ix
decision boundaries

iy

quantization level
or codeword

{ }
i

iii

iii

yy
xxxxIei

xxIx

=⇒
<≤=

=∈

−

−

1

1

| .,.
),[

111

110

101

000

001

010

011

100

x

quantization cell/bin/interval

ℜ Ζ

Typical Inverse Typical Inverse QuantizerQuantizer

y xQ
Inverse Quantizer

^-1

x

y

clipping, overflow
Δ

iy

ix1−ix
decision boundaries

111

110

101

000

001

010

011

100

1−iy

ix̂1ˆ −ix

Typical reconstruction

Quantization error
2

ˆ 1−+
= ii

i
xxx

xxq −= ˆ

MidMid--rise versus Midrise versus Mid--treadtread

x

y
Δ

ix̂

y
Δ

ix̂

Uniform Midrise Quantizer Uniform Midtread Quantizer
Popular in ADC
For a b-bit midrise

Popular in compression
For a b-bit midtread

maxx
maxx− x

maxx
maxx−

b

x
2

2 max=Δ
12

2 max

−
=Δ b

x

ix̂

Quantization ErrorsQuantization Errors
Approximation error

Lack of quantization resolution, too few
quantization levels, too large quantization step-size
Causes staircase effect
Solution: increases the number of quantization
levels, and hence, increase the bit-rate

Clipping error
Inadequate quantizer range limits, also known as
overflow
Solution

Requires knowledge of the input signal
Typical practical range for a zero-mean signal

RMS

RMS

xx
xx
4

4

min

max

−=
=

∫=
T

RMS dttx
T

x
0

2)(1

Quantization: Error ModelQuantization: Error Model

+x x̂

q

x xQ
^-1Q

xxqqxx −=⇒+= ˆˆ
Quantization error:

anceerror varion quantizati][

])ˆ([])ˆ[()ˆ,(

2
 offunction

22

==

−=−=

qE

xxExxExxD
x

43421

Mean-squared distortion measure:

()

xq
xy

xfx X

 oft independen RVmean -0
RV ˆ RV;

 PDF with RV
Assumptions:

would like to minimize

∑ ∫
=

+ −=
L

k
X

x

x k dxxfxxk

k1

2)()ˆ(1

Quantization Error VarianceQuantization Error Variance

dxxfxxxxExxD X)()ˆ(])ˆ[(),ˆ(22 ∫
∞

∞−
−=−=

L+−+−= ∫∫ dxxfxxdxxfxx X

x

xX

x

x
)()ˆ()()ˆ(3

2

2

1

2
2

2
1

+x x̂

q

Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

22
 :boundError Δ

≤≤
Δ

− q
x

y
Δ

ix̂

maxx
maxx− 2

ˆ :tionreconstrucCenter 1−+
= ii

i
xxx

maxmax :input Bounded xxx ≤≤−

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

b-bit Quantizer

Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

dqqfqqExxD Q)(][),ˆ(22 ∫
∞

∞−
==

2

2

32

2

2

3
11 Δ

Δ−

Δ

Δ− Δ
=

Δ
= ∫ qdqq

1223
2 23 Δ

=⎟
⎠
⎞

⎜
⎝
⎛ Δ

Δ
=

b-bit quantizer

b

x
2

2 max=Δ

b

x
2

2
max

23
1

=

2 offactor aby reduce
 double bit/symbol 1by Increase

Δ⇒
⇒ Lb

SignalSignal--toto--Noise RatioNoise Ratio
Definition of SNR in decibel (dB)

2

2

10log10
q

x
dBSNR

σ
σ

=
power of the signal

power of the noise
For quantization noise

Δ−=
Δ

= 10
2

102

2

10 log2012log1012log10 x
x

dBSNR σσ

Suppose that we now add 1 more bit to our Q resolution:

2
Δ

=Δ′ Δ′−=⇒ 10
2

10
' log2012log10 xdBSNR σ

2log20
2log20log2012log10

10

1010
2

10
'

+=
+Δ−=⇒

dB

xdB

SNR
SNR σ

dBSNRSNR dBdB 6' +≈⇒

ExampleExample

Design a 3-bit uniform quantizer for a signal with range [0,128]

823 ==LMaximum possible number of levels:

16
8

128minmax ==
−

=Δ
L

xxQuantization stepsize:

{ }7,6,5,4,3,2,1,0=iyQuantization levels:

{ }120,104,88,72,56,40,24,8ˆ =ixReconstruction levels:

8≤qMaximum quantization error:

Example of Popular QuantizationExample of Popular Quantization
Round

Floor

Ceiling

xxroundy integer tonearest)(==

⎣ ⎦ xxxfloory an smaller thinteger largest)(===

⎡ ⎤ xxxceily n larger thainteger smallest)(===

y

ix̂
x

maxx
minx

Uniform midtread quantizer from Round and Floor

⎥⎦
⎥

⎢⎣
⎢ +
Δ

=⎟
⎠
⎞

⎜
⎝
⎛
Δ

= 5.0xxroundy

Δ

yx ×Δ=ˆ

Quantization from RoundingQuantization from Rounding

x

4=Δ

()

yxx
x

4ˆ ;
4

roundy 4;

16 ,16 :input Bounded

=⎟
⎠
⎞

⎜
⎝
⎛==Δ

−∈

Uniform Quantizer, step-size=4

y

6 10 14–14 –6–10 2–2

Optimal Scalar QuantizationOptimal Scalar Quantization

()
minimized is ˆsuch that ˆ Find

 PDFknown with RV
,x)xD(x&x

xfx

kk

X

Problem Statement:

minimized is ˆsuch that find ,ˆGiven ,x)xD(xx kk

Optimal Encoder for a Given Decoder:

Notes:
Non-uniform quantizer under consideration
Reconstruction can be anywhere, not necessarily
the center of the interval

k

L

k
X

x

x k xdxxfxxxxD k

k

 w.r.t)()ˆ(),ˆ(Minimize
1

21∑ ∫
=

+ −=

Nearest
Neighbor

Rule

Optimal Scalar QuantizationOptimal Scalar Quantization

k

L

k
X

x

x k xdxxfxxxxD k

k

 w.r.t)()ˆ(),ˆ(Minimize
1

21∑ ∫
=

+ −=

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∫
=

+
L

k
X

x

x k
kk

dxxfxx
x

xxD
x

k

k1

2)()ˆ(),ˆ(1

δ
δ

δ
δ

{ }dxxfxxdxxfxx
x X

x

x kX

x

x k
k

k

k

k

k

)()ˆ()()ˆ(1

1

22
1 ∫∫

+

−

−+−= −δ
δ

Fundamental Theorem of Calculus

∫∫ ==⇒=
x

C

x

C
xfdttf

dx
dxF

dx
ddttfxF)()()()()(

0)()ˆ()()ˆ(22
1 =−−−= − kXkkkXkk xfxxxfxx

2
ˆˆ

0ˆˆ 1
1

kk
kkkkk

xxxxxxx +
=⇒=−+−⇒ −

−

Centroid
Rule

Optimal Scalar QuantizationOptimal Scalar Quantization

minimized is ˆsuch that ˆ find ,Given ,x)xD(xx kk

Optimal Decoder for a Given Encoder:

k

L

k
X

x

x k xdxxfxxxxD k

k

ˆ w.r.t)()ˆ(),ˆ(Minimize
1

21∑ ∫
=

+ −=

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∫
=

+
L

k
X

x

x k
kk

dxxfxx
x

xxD
x

k

k1

2)()ˆ(
ˆ

),ˆ(
ˆ

1

δ
δ

δ
δ

0)()ˆ(2)()ˆ(
ˆ

11 2 =−−=−= ∫∫
++ dxxfxxdxxfxx

x X

x

x kX

x

x k
k

k

k

k

kδ
δ

dxxf

dxxfx
x

dxxfxdxxfx

k

k

k

k

k

k

k

k

x

x X

X

x

x
k

X

x

x kX

x

x

∫
∫

∫∫

+

+

++

=⇒

=−⇒

1

1

11

)(

)(
ˆ

0)(ˆ)(

][in of
 centroid theis ˆ value

tion reconstruc Optimal

1+kkX

k

, xx(x)f
x

LloydLloyd--Max Max QuantizerQuantizer

!x̂for solve to xand
 for x solve toˆ need weely,Unfortunat

kk

kkx

Main idea [Lloyd 1957] [Max 1960]
solving these 2 equation iteratively until D converges

Assumptions
Input PDF is known and stationary
Entropy has not been taken into account

Nearest
Neighbor

Partitioning

Centroid
Computation

Input Codebook Updated Codebook

mC 1+mC

index of m-th iteration

ExampleExample

x

x
X exf λλ −=

2
)(

2
λ

y

ix̂

x
a

–a 0
b

–b

dxe

dxex
b

x

a

x

a

λ

λ

λ

λ

−∞

−∞

∫

∫
=

2

2
Cxedxxe

Cedxe

x
x

xx

++−=

+−=

−
−

−−

∫

∫

)1(

1

2 λ
λ

λ
λ

λ

λλ

∞
−

∞−

−

+−
=

a

x

a

x

e

xe

λ

λ

λ
λ

2
1

)1(
2

a

a

e

ae

λ

λ

λ
λ

−

−

+
=

2
1

)1(
2

λ
λ

λ
1)1(1

+=+= aa

ExampleExample

x

x
X exf λλ −=

2
)(

2
λ

y

ix̂

x
a

–a 0
b

–b

λ
1 :Rule Centroid += ab

22
0 :RuleNeighbor Nearest bba =
+

=
λλ
1)1(

2
1

=⇒+=⇒ aaa

∫ ∫−

∞
−+−=

a

a a XX dxxfbxdxxfxD)()(2)()0(:Distortion 22

Embedded QuantizationEmbedded Quantization

S MSB LSB F1 F2

Discard N integer bit planes
+ all fractional bit planes

y

x

x xQ
^-1Q y

Also called bit-plane quantization, progressive quantization
Most significant information is transmitted first
JPEG2000 quantization strategy

Embedded Forward QuantizationEmbedded Forward Quantization

x

N2=Δ

()
discarded planesbit t significanleast 2N

16 ,16 :input Bounded
=

−∈x

Embedded Quantizer, N=2

y

4–4 8–16 12 16–8–12
Dead Zone

Embedded Inverse QuantizationEmbedded Inverse Quantization

1

0

1

1

0
Original
symbol
x = 22

X

X

X

X

1

Truncate
4 bit planes

Range=[16, 32)
x = 24

X

X

X

0

1

Receive 1
refinement bit
Range=[16, 24)

x = 20
= 24 – 4

X

X

1

0

1

Receive 2
refinement bits
Range=[20, 24)

x = 22
= 20 + 2

N-bit-plane truncation = scalar quantization with N2=Δ

^ ^ ^

Vector QuantizationVector Quantization

n-dimensional generalization of scalar quantizer

Nearest neighbor and centroid rule still apply

CQ n →ℜ :

n-dimensional
input vectors

codebook, containing
code-vectors or codewords

2ℜ

1x

2x2ℜ

1x

2x

Vector Q
Separable
Scalar Q

	Review
	Outline
	Deterministic versus Random
	Probability
	Important Properties
	Probability Examples
	Conditional Probability
	Random Variable
	Probability Density Function
	PDF Examples
	Discrete Random Variable
	Expectation
	Cross Correlation & Covariance
	Independence & Correlation
	Random Process
	Wide-Sense Stationary
	White Random Process
	Stochastic Signal Model
	Continuous & Discrete Representations
	Multi-Dimensional Digital Signals
	Popular Signal Formats
	Popular Signal Formats
	High-Definition Television (HDTV)
	Digital Bit Rates
	Error or Similarity Measures
	Variable Length Coding: Introduction to �Lossless Compression
	Outline
	Information Theory
	Entropy
	Entropy Example
	Entropy Example
	Fixed-Length Codes
	ASCII Code
	ASCII Table
	Variable-Length Codes
	Morse Codes & Telegraphy
	Issues in VLC Design
	VLC Example
	VLC Example
	Shannon-Fano Code
	Huffman Code
	Huffman Coding Algorithm
	Huffman Coding Example
	Huffman Coding Example
	Huffman Shortcomings
	Extended Huffman Code
	Arithmetic Coding: Main Idea
	Coding Example
	Arithmetic Encoding Process
	Arithmetic Decoding Process
	Arithmetic Decoding Example
	Adaptive Arithmetic Coding
	Arithmetic Coding: Notes
	Run-Length Coding
	Run-Length Coding
	Run-Length Coding
	Quantization
	Outline
	Reminder
	Quantization
	Typical Quantizer
	Typical Inverse Quantizer
	Mid-rise versus Mid-tread
	Quantization Errors
	Quantization: Error Model
	Quantization Error Variance
	Uniform Quantization – Bounded Input
	Uniform Quantization – Bounded Input
	Signal-to-Noise Ratio
	Example
	Example of Popular Quantization
	Quantization from Rounding
	Optimal Scalar Quantization
	Optimal Scalar Quantization
	Optimal Scalar Quantization
	Lloyd-Max Quantizer
	Example
	Example
	Embedded Quantization
	Embedded Forward Quantization
	Embedded Inverse Quantization
	Vector Quantization

