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Review of probability

Definition, properties, examples
Random variable
Random process
Signal modeling via random process

Multimedia signal properties & formats
Digital signals
Image/video signals: properties & formats
Color space
Error & similarity measurements



Deterministic versus RandomDeterministic versus Random

Deterministic
Signals whose values can be specified explicitly
Example: a sinusoid

Random
Digital signals in practice can be treated as a 
collection of random variables or a random process
The symbols which occur randomly carry information

Probability theory
The study of random outcomes/events 
Use mathematics to capture behavior of random 
outcomes and events



ProbabilityProbability

Events and outcomes
Let X be an event with N possible mutually 
exclusive outcomes
Example

A coin toss is an event with 2 outcomes: 
Head (H) or Tail (T)
A dice toss is an event with 6 outcomes: 
{1,2,3,4,5,6}

Probability
The likelihood of observing a particular 
outcome      above
Standard notation
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Important PropertiesImportant Properties
Probability computation or estimation

Basic properties
Every probability measure lies inclusively between 0 and 1

Sum of probabilities of all outcomes is unity:

For N equally likely outcomes

For two statistically independent event
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Probability ExamplesProbability Examples
Fair coin flip

Tossing two honest coins: what is the probability of 
observing two heads or two tails?

Poker game with a standard deck of 52 cards, what 
is the probability of getting a 5-card heart flush? 
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Conditional ProbabilityConditional Probability

Conditional probability of an event A assuming 
that event B has occurred, denoted P[A|B], equals

Bayes’ Rule:

Independent events: 
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Random VariableRandom Variable
Random variable (RV)

A random variable X is a mapping which 
assigns a real number x to each possible 
outcome of a random experiment
A random variable X takes on a value x from a 
given set. Thus it is simply an event whose 
outcomes have numerical values
Examples

X in coin toss, X=1 for Head, X=0 for Tail
The temperature outside Barton Hall at any 
moment t
The pixel value at location x, y in frame n
of a future Hollywood blockbuster
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Probability Density FunctionProbability Density Function

Probability density function (PDF) of a RV X
Function              defined such that:

Histogram of X !!!
Main properties:
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PDF ExamplesPDF Examples
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Discrete Random VariableDiscrete Random Variable

RV that takes on discrete values only
PDF of discrete RV = discrete histogram
Example: how many Heads in 3 independent 
coin tosses?
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ExpectationExpectation

Expected value
Let g(X) be a function of RV X. The expected value 
of g(X) is defined as

Expectation is linear!
Expectation of a deterministic constant is itself:

Mean
Mean-square value
Variance
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Cross Correlation & CovarianceCross Correlation & Covariance

Cross correlation
X, Y: 2 jointly distributed RVs
Joint PDF:

Expectation: 

Cross-correlation:

Cross covariance
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Independence & CorrelationIndependence & Correlation

Marginal PDF:

Statistically independent:

Uncorrelated:

Orthogonal:
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Random ProcessRandom Process
Random process (RP)

A collection of RVs
A time-dependent RV
Denoted {X[n]}, {X(t)} or simply X[n], X(t)
We need N-dimensional joint PDF to characterize X[n]!
Note: the RVs made up a RP may be dependent or 
correlated
Examples:

Temperature X(t) outside Barton Hall
A sequence of binary numbers transmitted over a 
communication channel
Speech, music, image, video signals



WideWide--Sense StationarySense Stationary
Wide-sense stationary (WSS) random process (RP)

A WSS RP is one for which E[X[n]] is independent of n
and                                           only depends on the 
difference (m – n)

Mean:
Auto-correlation sequence:
Energy:

Variance:

Co-variance:
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White Random ProcessWhite Random Process
Power spectral density

The power spectrum of a WSS RP is defined as the 
Fourier transform of its auto-correlation sequence

White RP
A RP is said to be white if any pair of samples are 
uncorrelated, i.e.,

White WSS RP

White 0-mean WSS RP
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Stochastic Signal ModelStochastic Signal Model
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For speech: N = 10 to 20
For images: N = 1! and 95.01 =a



Continuous & Discrete RepresentationsContinuous & Discrete Representations

Continuous-Amplitude Discrete-Amplitude

Continuous
-Time
(Space) Local telephone, cassette-tape 

recording & playback,  
phonograph,  photograph telegraph

Discrete
-Time
(Space) Switched capacitor filter, 

speech storage chip, half-tone 
photography

CD, DVD, cellular phones, 
digital camera & camcorder, 
digital television, inkjet 
printer

t

x(t)

t

x(t)

n

x[n]

n

x[n]



MultiMulti--Dimensional Digital SignalsDimensional Digital Signals
Images: 2-D digital signals

pixel
or
pel

Video Sequences: 3-D digital signals, 
a collection of 2-D images called 
frames

x

y
t

black
p=0

gray
p=128

white
p=255

colors:
combination
of RGB



Popular Signal FormatsPopular Signal Formats
RGB

Red Green Blue, typically 8-bit per sample for each color plane

YCrCb
Y: luminance, gray-scale component
Cr & Cb: chrominance, color components, less energy than Y 
Chrominance components can be down-sampled without much 
aliasing
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Popular Signal FormatsPopular Signal Formats
CIF: Common Intermediate Format

Y resolution: 352 x 288
Cr, Cb resolution: 176 x 144
Frame rate: 30 frames/second progressive
8 bits/pixel(sample)

QCIF: Quarter Common Intermediate Format
Y resolution: 176 x 144
Cr, Cb resolution: 88 x 72 
Frame rate: 30 frames/second progressive
8 bits/pixel (sample)

TV – NTSC
Resolution: 704 x 480, 30 frames/second interlaced

DVD – NTSC 
Resolution: 720 x 480, 24 – 30 frames/second 
progressive

Y

Cr
Cb

Y

Cr
Cb

Frame 
n

Frame 
n+1



HighHigh--Definition Television (HDTV)Definition Television (HDTV)
720i

Resolution: 1280 x 720, interlaced

720p 
Resolution: 1280 x 720, progressive

1080i
Resolution: 1920 x 1080, interlaced

1080p
Resolution: 1920 x 1080, progressive

Interlaced
Video
Frame

odd field

even field



Digital Bit RatesDigital Bit Rates
A picture is worth a thousand words?
Size of a typical color image

For display
640 x 480 x 24 bits = 7372800 bits = 92160 bytes

For current mainstream digital camera
2560 x 1920  x 24 bits =  117964800 bits = 14745600 bytes

For an average word
6 characters/word, 7 bits/character: 42 bits ~= 5 bytes

Bit rate: bits per second for transmission
Raw digital video (DVD format)

720 x 480 x 24 x 24 frames: ~200 Mbps
CD Music

44100 samples/second x 16 bits/sample = 689 kbps   



Error or Similarity MeasuresError or Similarity Measures

Mean Square Error (MSE)

Mean Absolute Difference (MAD)

Max Error

Peak Signal-to-Noise Ratio (PSNR)
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Variable Length Coding: Introduction to Variable Length Coding: Introduction to 
Lossless CompressionLossless Compression
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Review of information theory
Fixed-length codes

ASCII

Variable-length codes
Morse code
Shannon-Fano code
Huffman code
Arithmetic code

Run-length coding



Information TheoryInformation Theory

A measure of information
The amount of information in a signal might not 
equal to the amount of data it produces
The amount of information about an event is closely 
related to its probability of occurrence

Self-information
The information conveyed by an event A with 
probability of occurrence P[A] is 
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EntropyEntropy
Entropy

Average amount of information of a source, more precisely, 
the average number of bits of information required to 
represent the symbols the source produces
For a source containing N independent symbols, its entropy 
is defined as 

Unit of entropy: bits/symbol
C. E. Shannon, “A mathematical theory of communication,”
Bell Systems Technical Journal, 1948

[ ] [ ]i
N

1i
i XPXPH 2log∑

=

−=



Entropy ExampleEntropy Example
Find and plot the entropy of the binary code in 
which the probability of occurrence for the 
symbol 1 is p and for the symbol 0 is 1-p
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Entropy ExampleEntropy Example

Find the entropy of a DNA sequence containing four 
equally-likely symbols {A,C,T,G}
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P[A]=1/2;  P[C]=1/4;  P[T]=P[G]=1/8;  H=?

So, how do we design codes to represent DNA sequences?
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FixedFixed--Length CodesLength Codes
Properties

Use the same number of bits to represent all possible 
symbols produced by the source
Simplify the decoding process

Examples
American Standard Code for Information Interchange 
(ASCII) code
Bar codes

One used by the US Postal Service
Universal Product Code (UPC) on products in stores 
Credit card codes  



ASCII CodeASCII Code
ASCII is used to encode and communicate alphanumeric 
characters for plain text
128 common characters: lower-case and upper-case letters, 
numbers, punctuation marks… 7 bits per character
First 32 are control characters (for example, for printer 
control)
Since a byte is a common structured unit of computers, it is 
common to use 8 bits per character – there are an additional 
128 special symbols
Example

00110011     00110100   00110100   00101110    00110000     00110010    00110101

51         52       52       46        48        50        53
3          4          4          .          0          2          5Character

Dec. index
Bin. code



ASCII TableASCII Table



VariableVariable--Length CodesLength Codes

Main problem with fixed-length codes: inefficiency
Main properties of variable-length codes (VLC)

Use a different number of bits to represent each symbol
Allocate shorter-length code-words to symbols that occur 
more frequently
Allocate longer-length code-words to rarely-occurred 
symbols
More efficient representation; good for compression

Examples of VLC
Morse code
Shannon-Fano code
Huffman code 
Arithmetic code



Morse Codes & TelegraphyMorse Codes & Telegraphy
Morse codes

E • T -

I • • M - -

S • • • O - - -

H • • • • CH - - - -

A • - N - •

U • • - D - • •

V • • • - B - • • •

R • - • K - • -

W • - - G - - •

L • - • • Y - • - -

P • - - • X - • • -

F • • - • Q - - • -

J • - - - C - • - •

“What hath God wrought?”, DC –
Baltimore, 1844
Allocate shorter codes for more 
frequently-occurring letters & numbers
Telegraph is a binary communication 
system – dash: 1; dot: 0



Issues in VLC DesignIssues in VLC Design
Optimal efficiency

How to perform optimal code-word allocation (in an efficiency 
standpoint) given a particular signal?

Uniquely decodable
No confusion allowed in the decoding process  
Example: Morse code has a major problem!

Message: SOS. Morse code: 000111000
Many possible decoded messages: SOS or VMS?

Instantaneously decipherable
Able to decipher as we go along without waiting for the entire 
message to arrive

Algorithmic issues
Systematic design?
Simple fast encoding and decoding algorithms?



VLC ExampleVLC Example
Symbol Prob. FLC Code 1 Code 2 Code 3 Code 4

A P[A]=1/2 000 1 1 0 00
B P[B]=1/4 001 01 10 10 01
C P[C]=1/8 010 001 100 110 10
D P[D]=1/16 011 0001 1000 1110 11
E P[E]=1/16 100 00001 10000 1111 110

Average
Length

H=30/16 3 31/16 31/16 30/16 33/16
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VLC ExampleVLC Example
Symbol Prob. FLC Code 1 Code 2 Code 3 Code 4

A P[A]=1/2 000 1 1 0 00
B P[B]=1/4 001 01 10 10 01
C P[C]=1/8 010 001 100 110 10
D P[D]=1/16 011 0001 1000 1110 11
E P[E]=1/16 100 00001 10000 1111 110

Average
Length

H=30/16 3 31/16 31/16 30/16 33/16

Uniquely decodable – Self-synchronizing: Code 1, 2, 3. 
No confusion in decoding
Instantaneous: Code 1, 3. No need to look ahead.
Prefix condition  =  uniquely decodable & instantaneous: 
no codeword is a prefix of another



ShannonShannon--FanoFano CodeCode
Algorithm

Line up symbols by decreasing probability of occurrence
Divide symbols into 2 groups so that both have similar 
combined probability
Assign 0 to 1st group and 1 to the 2nd

Repeat step 2 

Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

0
0
1
1
1

0
1
0
1
1

0
1

Code-word
Average code-word length =
0.35 x 2 + 0.17 x 2 + 0.17 x 2

+ 0.16 x 3 + 0.15 x 3
= 2.31 bits/symbol

H=2.2328 bits/symbol



Huffman CodeHuffman Code
Shannon-Fano code [1949]

Top-down algorithm: assigning code from most 
frequent to least frequent
VLC, uniquely & instantaneously decodable (no 
code-word is a prefix of another)
Unfortunately not optimal in term of minimum 
redundancy

Huffman code [1952]
Quite similar to Shannon-Fano in VLC concept
Bottom-up algorithm: assigning code from least 
frequent to most frequent
Minimum redundancy when probabilities of 
occurrence are powers-of-two
In JPEG images, DVD movies, MP3 music



Huffman Coding AlgorithmHuffman Coding Algorithm
Encoding algorithm

Order the symbols by decreasing probabilities
Starting from the bottom, assign 0 to the least probable 
symbol and 1 to the next least probable
Combine the two least probable symbols into one 
composite symbol
Reorder the list with the composite symbol
Repeat Step 2 until only two symbols remain in the list

Huffman tree
Nodes: symbols or composite symbols
Branches: from each node, 0 defines one branch while 1 
defines the other

Decoding algorithm
Start at the root, follow the branches based on the bits 
received
When a leaf is reached, a symbol has just been decoded

Root

1 0
01

Leaves

Node



Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
0.35
0.17
0.17
0.16
0.15

1
0

Symbols
A
DE
B
C

Prob.
0.35
0.31
0.17
0.17

1
0

Symbols
A
BC
DE

Prob.
0.35
0.34
0.31

1
0

Symbols
BCDE
A

Prob.
0.65
0.35

1
0

01BC DE
01B

C

01

D

E

1 0 ABCDE

Huffman Tree
Huffman Codes

A     0
B     111
C     110
D     101
E     100 Average code-word length = E[L] =

0.35 x 1 + 0.65 x 3 = 2.30 bits/symbol 



Huffman Coding ExampleHuffman Coding Example
Symbols

A
B
C
D
E

Prob.
1/2
1/4
1/8
1/16
1/16

0
1

Symbols
A
B
C
DE

Prob.
1/2
1/4
1/8
1/8

0
1

Symbols
A
B
CDE

Prob.
1/2
1/4
1/4

0
1

Symbols
A
BCDE

Prob.
1/2
1/2

0
1

Huffman Codes
A     0
B     10
C     110
D     1110
E     1111

Average code-word length = E[L] = 
0.5 x 1 + 0.25 x 2 + 0.125 x 3 + 0.125 x 4 = 1.875 bits/symbol  = H

01CDE B

1
1DE C

E

0

D

1 0
ABCDE

Huffman Tree

0



Huffman ShortcomingsHuffman Shortcomings

Difficult to make adaptive to data changes
Only optimal when 
Best achievable bit-rate = 1 bit/symbol 

ikiXP
2
1][ =

Question: What happens if we only have 2 symbols 
to deal with? A binary source with skewed statistics?

Example: P[0]=0.9375; P[1]=0.0625.                                
H = 0.3373 bits/symbol. Huffman: E[L] = 1.
One solution: combining symbols!



Extended Huffman CodeExtended Huffman Code

Symbols
AA
AB
BA
BB

Prob.
225/256
15/256
15/256
1/256

H=0.6746 bits/symbol

Symbols
A=0
B=1

Prob.
15/16
1/16

H=0.3373 bits/symbol

01
1

BB BA
AB

1 0
AA

Huffman Tree

0

Average code-word length = E[L] = 1 x 225/256 + 2 x 15/256
+ 3 x 15/256 + 3 x 1/256 = 1.1836 bits/symbol >> 2

Larger grouping yield better performance
Problems

Storage for codes
Inefficient & time-consuming 
Still not well-adaptive 



Arithmetic Coding: Main IdeaArithmetic Coding: Main Idea
Peter Elias in Robert Fano’s class!
Large grouping improves coding performance; however, we 
do not want to generate codes for all possible sequences
Wish list

a tag (unique identifier) is generated for the sequence to be encoded
easy to adapt to statistic collected so far
more efficient than Huffman

Main Idea: tag the sequence to be encoded with a number in 
the unit interval [0, 1) and send that number to the decoder

Review: binary representation of fractions
2

21
10 11.02225.05.075.0 =+=+= −−

2
9732

10 011000101.02222384765625.0 =+++= −−−−



Coding ExampleCoding Example

Symbol Probability Huffman Code
X1 0.05 10101
X2 0.2 01
X3 0.1 100
X4 0.05 10100
X5 0.3 11
X6 0.2 00
X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

Huffman: 01 01 100 100 00 11 1011                   18 bits



Arithmetic Encoding ProcessArithmetic Encoding Process

Sym Prob Huffman
X1 0.05 10101
X2 0.2 01
X3 0.1 100
X4 0.05 10100
X5 0.3 11
X6 0.2 00
X7 0.1 1011

String to encode: X2 X2 X3 X3 X6 X5 X7

X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

range = high – low
new_high = low + range x subinterval_high
new_low = low+range x subinterval_low

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

Send to decoder: 0.07133483886719
2

16151074 0000110001001001.022222 =++++ −−−−−

16 bitsFinal interval = [0.0713336,0.0713360)



Arithmetic Decoding ProcessArithmetic Decoding Process

low=0; high=1; range=high – low
REPEAT

Find index i such that

OUTPUT SYMBOL
high = low + range x subinterval_high
low = low + range x subinterval_low
range = high – low 

UNTIL END

l_highsubinterva  l_lowsubinterva ≤
−

≤
range

lowvalue

UPDATE



Arithmetic Decoding ExampleArithmetic Decoding Example
X7
X6

X5
X4
X3
X2
X10

0.05

0.25
0.35
0.40

0.70

0.90
1

X2
X3 X3

X6

X5

X7 X7
X6

X5
X4
X3
X2
X1

0.05

0.25

0.06

0.1

0.070

0.074

0.0710

0.0714

0.07128

0.07136

0.071312

0.071336

0.0713336

0.0713360

05.005.010
25.025.010

X250 
1

0...071334.0050

0;1;0

2

=×+=
=×+=

⇒≤
−

≤

===

low
high

. .

rangehighlow

06.005.02.005.0
1.025.02.005.0

X250 1067.0
20.0

05.0...071334.0050 2

=×+=
=×+=

⇒≤=
−

≤

low
high

. .

...X350 2834.0
04.0

06.0...071334.0250 3⇒≤=
−

≤ . .



Adaptive Arithmetic CodingAdaptive Arithmetic Coding
Three symbols {A, B, C}. Encode: BCCB…

A B C

0

33%

66%

1

P[A]=1/3

P[B]=1/3

P[C]=1/3

0.333

0.666

25%

75%

P[A]=1/4

P[B]=1/2

P[C]=1/4

0.5834

0.666

20%

60%

P[A]=1/5

P[B]=2/5

P[C]=2/5

0.6334

0.666

16%

50%

P[A]=1/6

P[B]=1/3

P[C]=1/2

Final interval = [0.6390, 0.6501)

2
1098731

10

1010001111.0222222

6396.0

=+++++

==
−−−−−−

output
Decode?



Arithmetic Coding: NotesArithmetic Coding: Notes

Arithmetic coding approaches entropy!
Near-optimal: finite-precision arithmetic, a whole 
number of bits or bytes must be sent
Implementation issues:

Incremental output: should not wait until the end of the 
compressed bit-stream; prefer incremental transmission scheme
Prefer integer implementations by appropriate scaling

[ ]∏=
i

iXP interval final of Size

[ ]
[ ] output  the tobits log

 scontribute y probabilit of  Symbol

2 i

ii

XP
XPX



RunRun--Length CodingLength Coding

Main idea
Encoding long runs of a single symbol by the length of the run

Properties
A lossless coding scheme
Our first attempt at inter-symbol coding
Really effective with transform-based coding since the transform 
usually produces long runs of insignificant coefficients
Run-length coding can be combined with other entropy coding 
techniques (for example, run-length and Huffman coding in 
JPEG)



RunRun--Length CodingLength Coding
Example: How do we encode the following string?

48476
L

48476
L

zeros 37zeros 14

0      0   1   0      0   1   0   0   0   0   0   3   0   5   0   0   14 −−

Run-length coding:
(run-length, size) binary amplitude value

number of consecutive zeros
before current non-zero symbol

number of bits needed to
encode this non-zero symbol

actual value of the 
non-zero symbol in binary

(0,4) 14 (2,3) 5 (1,2) -3 (5,1) 1 (14,1) -1 (0,0)



RunRun--Length CodingLength Coding
48476

L
48476

L

zeros 37zeros 14

0      0   1   0      0   1   0   0   0   0   0   3   0   5   0   0   14 −−

(run-length, size) binary value

(0,4) 14   (2,3) 5   (1,2) -3   (5,1) 1   (14,1) -1   (0,0)

sign bit MSB … LSB
0: positive
1: negative

always 1, no
need to encode

4 000
3 01
2 00
1 0
-1 1
-2 10
-3 11
-4 100

⎩
⎨
⎧ >−

=
−

otherwise,
0,2

   ofbinary 
1

S
SS

S
size

raw binaryHuffman or
arithmetic coding



QuantizationQuantization
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OutlineOutline
Review
Quantization

Nonlinear mapping
Forward and inverse quantization
Quantization errors

Clipping error
Approximation error
Error model

Optimal scalar quantization
Examples



ReminderReminder

reconstructed
signal

original
signal

1−Q

Q

1−T

T
compressed
bit-stream

1−E

E

Information theory
VLC
Huffman
Arithmetic
Run-length

Quantization



QuantizationQuantization
Entropy coding techniques 

Perform lossless coding
No flexibility or trade-off in bit-rate versus distortion

Quantization 
Lossy non-linear mapping operation: a range of 
amplitude is mapped to a unique level or codeword
Approximation of a signal source using a finite 
collection of discrete amplitudes
Controls the rate-distortion trade-off
Applications

A/D conversion
Compression



Typical Typical QuantizerQuantizer

x yQ

y

Forward Quantizer

input output

clipping/overflow

clipping/overflow

stepsizeon quantizatiΔ =i

ix1−ix
decision boundaries

iy

quantization level
or codeword

{ }
i

iii

iii

yy
xxxxIei

xxIx

=⇒
<≤=

=∈

−

−

1

1

|  .,.
),[

111

110

101

000

001

010

011

100

x

quantization cell/bin/interval

ℜ Ζ



Typical Inverse Typical Inverse QuantizerQuantizer

y xQ
Inverse Quantizer

^-1

x

y

clipping, overflow
Δ

iy

ix1−ix
decision boundaries

111

110

101

000

001

010

011

100

1−iy

ix̂1ˆ −ix

Typical reconstruction

Quantization error
2

ˆ 1−+
= ii

i
xxx

xxq −= ˆ



MidMid--rise versus Midrise versus Mid--treadtread

x

y
Δ

ix̂

y
Δ

ix̂

Uniform Midrise Quantizer Uniform Midtread Quantizer
Popular in ADC
For a b-bit midrise

Popular in compression
For a b-bit midtread

maxx
maxx− x

maxx
maxx−

b

x
2

2 max=Δ
12

2 max

−
=Δ b

x

ix̂



Quantization ErrorsQuantization Errors
Approximation error

Lack of quantization resolution, too few 
quantization levels, too large quantization step-size
Causes staircase effect
Solution: increases the number of quantization 
levels, and hence, increase the bit-rate

Clipping error
Inadequate quantizer range limits, also known as 
overflow
Solution

Requires knowledge of the input signal
Typical practical range for a zero-mean signal 

RMS

RMS

xx
xx
4

4

min

max

−=
=

∫=
T

RMS dttx
T

x
0

2 )(1



Quantization: Error ModelQuantization: Error Model

+x x̂

q

x xQ
^-1Q

xxqqxx −=⇒+= ˆˆ
Quantization error:

anceerror varion quantizati][

])ˆ([])ˆ[()ˆ,(

2
 offunction 

22

==

−=−=

qE

xxExxExxD
x

43421

Mean-squared distortion measure:

( )

xq
xy

xfx X

 oft independen RVmean -0   
RV   ˆ   RV;   

 PDF   with  RV   
Assumptions:



would like to minimize

∑ ∫
=

+ −=
L

k
X

x

x k dxxfxxk

k1

2 )()ˆ(1

Quantization Error VarianceQuantization Error Variance

dxxfxxxxExxD X )()ˆ(])ˆ[(),ˆ( 22 ∫
∞

∞−
−=−=

L+−+−= ∫∫ dxxfxxdxxfxx X

x

xX

x

x
)()ˆ()()ˆ( 3

2

2

1

2
2

2
1

+x x̂

q



Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

22
   :boundError Δ

≤≤
Δ

− q
x

y
Δ

ix̂

maxx
maxx− 2

ˆ  :tionreconstrucCenter 1−+
= ii

i
xxx

maxmax  :input Bounded xxx ≤≤−

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

b-bit Quantizer



Uniform Quantization Uniform Quantization –– Bounded InputBounded Input

x

q

Δ

ix̂
maxx

maxx−
high bit-rate
assumption

q

)(qfQ

2
Δ

2
Δ

−

Δ
1

dqqfqqExxD Q )(][),ˆ( 22 ∫
∞

∞−
==

2

2

32

2

2

3
11 Δ

Δ−

Δ

Δ− Δ
=

Δ
= ∫ qdqq

1223
2 23 Δ

=⎟
⎠
⎞

⎜
⎝
⎛ Δ

Δ
=

b-bit quantizer

b

x
2

2 max=Δ

b

x
2

2
max

23
1

=

2 offactor  aby   reduce 
  double  bit/symbol 1by   Increase

Δ⇒
⇒ Lb



SignalSignal--toto--Noise RatioNoise Ratio
Definition of SNR in decibel (dB)

2

2

10log10
q

x
dBSNR

σ
σ

=
power of the signal

power of the noise
For quantization noise

Δ−=
Δ

= 10
2

102

2

10 log2012log1012log10 x
x

dBSNR σσ

Suppose that we now add 1 more bit to our Q resolution:

2
Δ

=Δ′ Δ′−=⇒ 10
2

10
' log2012log10 xdBSNR σ

2log20                
2log20log2012log10

10

1010
2

10
'

+=
+Δ−=⇒

dB

xdB

SNR
SNR σ

dBSNRSNR dBdB 6' +≈⇒



ExampleExample

Design a 3-bit uniform quantizer for a signal with range [0,128]

823 ==LMaximum possible number of levels:

16
8

128minmax ==
−

=Δ
L

xxQuantization stepsize:

{ }7,6,5,4,3,2,1,0=iyQuantization levels:

{ }120,104,88,72,56,40,24,8ˆ =ixReconstruction levels:

8≤qMaximum quantization error:



Example of Popular QuantizationExample of Popular Quantization
Round

Floor

Ceiling

xxroundy  integer tonearest )( ==

⎣ ⎦ xxxfloory an smaller thinteger largest )( ===

⎡ ⎤ xxxceily n larger thainteger smallest )( ===

y

ix̂
x

maxx
minx

Uniform midtread quantizer from Round and Floor

⎥⎦
⎥

⎢⎣
⎢ +
Δ

=⎟
⎠
⎞

⎜
⎝
⎛
Δ

= 5.0xxroundy

Δ

yx ×Δ=ˆ



Quantization from RoundingQuantization from Rounding

x

4=Δ

( )

yxx
x

4ˆ  ;
4

roundy  4;

16 ,16  :input Bounded

=⎟
⎠
⎞

⎜
⎝
⎛==Δ

−∈

Uniform Quantizer, step-size=4

y

6 10 14–14 –6–10 2–2



Optimal Scalar QuantizationOptimal Scalar Quantization

( )
minimized is ˆsuch that  ˆ Find

 PDFknown  with RV   
,x)xD(x&x

xfx

kk

X

Problem Statement:

minimized is ˆsuch that   find ,ˆGiven ,x)xD(xx kk

Optimal Encoder for a Given Decoder:

Notes:
Non-uniform quantizer under consideration
Reconstruction can be anywhere, not necessarily 
the center of the interval 

k

L

k
X

x

x k xdxxfxxxxD k

k

   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=



Nearest
Neighbor

Rule

Optimal Scalar QuantizationOptimal Scalar Quantization

k

L

k
X

x

x k xdxxfxxxxD k

k

   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∫
=

+
L

k
X

x

x k
kk

dxxfxx
x

xxD
x

k

k1

2 )()ˆ(),ˆ( 1

δ
δ

δ
δ

{ }dxxfxxdxxfxx
x X

x

x kX

x

x k
k

k

k

k

k

)()ˆ()()ˆ(  1

1

22
1 ∫∫

+

−

−+−= −δ
δ

Fundamental Theorem of Calculus

∫∫ ==⇒=
x

C

x

C
xfdttf

dx
dxF

dx
ddttfxF )()()()()(

0)()ˆ()()ˆ( 22
1 =−−−= − kXkkkXkk xfxxxfxx

2
ˆˆ

0ˆˆ 1
1

kk
kkkkk

xxxxxxx +
=⇒=−+−⇒ −

−



Centroid
Rule

Optimal Scalar QuantizationOptimal Scalar Quantization

minimized is ˆsuch that  ˆ find ,Given ,x)xD(xx kk

Optimal Decoder for a Given Encoder:

k

L

k
X

x

x k xdxxfxxxxD k

k

ˆ   w.r.t )()ˆ(),ˆ(  Minimize
1

21∑ ∫
=

+ −=

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∫
=

+
L

k
X

x

x k
kk

dxxfxx
x

xxD
x

k

k1

2 )()ˆ(
ˆ

),ˆ(
ˆ

1

δ
δ

δ
δ

0)()ˆ(2)()ˆ(
ˆ

11 2 =−−=−= ∫∫
++ dxxfxxdxxfxx

x X

x

x kX

x

x k
k

k

k

k

kδ
δ

dxxf

dxxfx
x

dxxfxdxxfx

k

k

k

k

k

k

k

k

x

x X

X

x

x
k

X

x

x kX

x

x
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∫
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+

+
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1

1
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tion reconstruc Optimal
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LloydLloyd--Max Max QuantizerQuantizer

!x̂for  solve  to xand
 for x solve  toˆ need  weely,Unfortunat

kk

kkx

Main idea [Lloyd 1957] [Max 1960]
solving these 2 equation iteratively until D converges

Assumptions
Input PDF is known and stationary
Entropy has not been taken into account

Nearest
Neighbor

Partitioning

Centroid
Computation

Input Codebook Updated Codebook

mC 1+mC

index of m-th iteration



ExampleExample

x

x
X exf λλ −=

2
)(

2
λ

y

ix̂

x
a

–a 0
b
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dxe

dxex
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a

x

a

λ

λ

λ

λ

−∞
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ExampleExample

x

x
X exf λλ −=

2
)(

2
λ

y

ix̂

x
a

–a 0
b

–b 

λ
1  :Rule Centroid += ab

22
0  :RuleNeighbor Nearest bba =
+

=
λλ
1)1(

2
1

=⇒+=⇒ aaa

∫ ∫−

∞
−+−=

a

a a XX dxxfbxdxxfxD )()(2)()0(  :Distortion 22



Embedded QuantizationEmbedded Quantization

S MSB LSB F1 F2

Discard N integer bit planes 
+ all fractional bit planes

y

x

x xQ
^-1Q y

Also called bit-plane quantization, progressive quantization 
Most significant information is transmitted first
JPEG2000 quantization strategy



Embedded Forward QuantizationEmbedded Forward Quantization

x

N2=Δ

( )
discarded planesbit t significanleast  2N

16 ,16  :input Bounded
=

−∈x

Embedded Quantizer, N=2

y

4–4 8–16 12 16–8–12
Dead Zone



Embedded Inverse QuantizationEmbedded Inverse Quantization

1

0

1

1

0
Original 
symbol 
x = 22

X

X

X

X

1

Truncate
4 bit planes

Range=[16, 32) 
x = 24

X

X

X

0

1

Receive 1
refinement bit
Range=[16, 24) 

x = 20
= 24 – 4

X

X

1

0

1

Receive 2
refinement bits
Range=[20, 24) 

x = 22
= 20 + 2

N-bit-plane truncation =  scalar quantization with N2=Δ

^ ^ ^



Vector QuantizationVector Quantization

n-dimensional generalization of scalar quantizer

Nearest neighbor and centroid rule still apply

CQ n →ℜ   :

n-dimensional
input vectors

codebook, containing 
code-vectors or codewords

2ℜ

1x

2x2ℜ

1x

2x

Vector Q
Separable
Scalar Q
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