
Image Coding and JPEGImage Coding and JPEG

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore MD 21218

OutlineOutline

Prediction
Open-loop differential pulse-code modulation (DPCM)
Closed-loop DPCM
Optimal linear prediction

Transformation
Transform fundamentals

Basis functions, transform coefficients
Invertibility, unitary
1D, 2D

Karhunen-Loeve Transform (KLT)
Optimal linear transform

Discrete Cosine Transform (DCT)
Putting everything together: JPEG

ReminderReminder

reconstructed
signal

original
signal

1−Q

Q

1−T

T
compressed
bit-stream

1−E

E

Information theory
VLC
Huffman
Arithmetic
Run-length

Quantization

Prediction
Transform

Predictive CodingPredictive Coding

We have only dealt with memory-less model so far
Each symbol/sample is quantized and/or coded without much
knowledge on previous ones

There is usually a strong correlation between
neighboring symbols/samples in multimedia signals
Simplest prediction scheme: take the difference!
If the difference between two adjacent symbols/samples
is quantized and encoded instead, we can achieve the
same level of compression performance using fewer bits
– the range of the differences should be a lot smaller.

OpenOpen--Loop DPCMLoop DPCM

input
signal

Q

communication
channel

encoder

[]nx []nd

D []1−nx

decoder

reconstructed
signal

[]nx̂ []nd̂

D []1ˆ −nx

1−Q

OpenOpen--Loop DPCM: AnalysisLoop DPCM: Analysis

Q-1Q
[]nd []nd̂ +[]nd []nd̂

[]nq

[] [] []000ˆ qdd += [] [] [] [] [] []00000ˆ0ˆ qxqddx +=+==

[] [] []111ˆ qdd += [] [] [] [] [] [] []00110ˆ1ˆ1ˆ qxqdxdx +++=+=

[] [] [] [] []00101 qxqxx +++−=

[] [] []101 qqx ++=

[] [] []nqndnd +=ˆ

[] [] []∑
=

+=
n

i

iqnxnx
0

ˆ [] [] []nxnxne −= ˆ []∑
=

=
n

i
iq

0

Quantization Error
Accumulation

[] [] []1−−= nxnxndEncoder

[] [] []1ˆˆˆ −+= nxndnxDecoder

OpenOpen--Loop DPCM: AnalysisLoop DPCM: Analysis
There seems to be a model mismatch

Encoder:
Decoder:

[] [] []1−−= nxnxnd
[] [] []
[] [] []1ˆˆˆ

1ˆˆˆ

−−=⇒

−+=

nxnxnd

nxndnx

[] [] []1ˆ −−= nxnxnd
How about using the reconstructed sample for the difference?

ClosedClosed--Loop DPCM: AnalysisLoop DPCM: Analysis

[] [] []1ˆ −−= nxnxndModified prediction scheme

[] [] []1ˆˆˆ −+= nxndnxDecoder remains the same

[] []
48476

nqnd +

[] [] []000ˆ qdd += [] [] [] [] [] []00000ˆ0ˆ qxqddx +=+==

[] [] []111ˆ qdd += [] [] [] [] [] [] []00110ˆ1ˆ1ˆ qxqdxdx +++=+=

[] [] [] [] []0010ˆ1 qxqxx +++−=
[] []11 qx +=

[] [] []nqnxnx +=ˆ No error accumulation!

ClosedClosed--Loop DPCMLoop DPCM

input
signal

Q

communication
channel

encoder

[]nx []nd

D

[]1ˆ −nx

decoder

reconstructed
signal

[]nx̂

[]nd̂

D []1ˆ −nx
1−Q

1−Q
[]nd̂

[]nx̂

ClosedClosed--Loop DPCM: ObservationsLoop DPCM: Observations

Quantization error does not accumulate
Minor modification in prediction scheme leads to major
encoder modification

Encoder now has decoder embedded inside
Closed-loop & open-loop DPCM has the same decoder
DPCM predicts current sample from last reconstructed
one
Generalization?

Replace the simple delay operator by more
complicated & more sophisticated predictor P(z)

Linear PredictionLinear Prediction

Q

communication
channel

encoder

[]nx []nd

()zP

[]np 1−Q
[]nd̂

[]nx̂

decoder

[]nx̂ []nd̂

[]np
1−Q

()zP

[] [] [] [] []{ }Nnxnxnxnxnp −−−= ˆ,,2ˆ,1ˆ|ˆ K []∑
=

−⎯⎯ →⎯
N

i
i

linear inxa
1

ˆ

Optimal Linear PredictionOptimal Linear Prediction
Problem

{ } [] [] minimized is ˆ s.t. Find
2

1

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−−== ∑

=

N

i
idi inxanxEDa σ

Assumptions
Signal is WSS
High bit rates, i.e., fine quantization

() [] [][]knxnxEkRxx +=

[] [] []∑∑
==

−≈−=
N

i
i

N

i
i inxainxanp

11

ˆ

Approach 0=D
aiδ
δ

Optimal Linear PredictionOptimal Linear Prediction

[] [] 0ˆ
2

1
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−−= ∑

=

N

i
i

ii

inxanxE
a

D
a δ

δ
δ
δ

[] [] [] 01ˆ2
11

=⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
−−−= ∑

=

nxinxanxED
a

N

i
iδ

δ

[] [] [] 02ˆ2
12

=⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
−−−= ∑

=

nxinxanxED
a

N

i
iδ

δ

[] [] [] 0ˆ2
1

=⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
−−−= ∑

=

NnxinxanxED
a

N

i
i

Nδ
δ

Optimal Linear PredictionOptimal Linear Prediction

[] [][] [] [][]∑
=

−−=−
N

i
i nxinxEanxnxE

1
11

[] [][] [] [][]∑
=

−−=−
N

i
i nxinxEanxnxE

1
22

() ()11
1

−=⇒ ∑
=

iRaR xx

N

i
ixx

() ()22
1

−=⇒ ∑
=

iRaR xx

N

i
ixx

() ()NiRaNR xx

N

i
ixx −=⇒ ∑

=1

[] [][] [] [][]∑
=

−−=−
N

i
i NnxinxEaNnxnxE

1

Optimal Linear PredictionOptimal Linear Prediction
() () ()
() () ()

() () ()

()
()

()⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−

NR

R
R

a

a
a

RNRNR

NRRR
NRRR

xx

xx

xx

Nxxxxxx

xxxxxx

xxxxxx

MM

L

MOMM

L

2
1

021

201
110

2

1

Correlation matrix of WSS RP x[n] Cross correlation
vector between
x[n] and past
observed samples

pRapaR 1
xxxx
−=⇒=

approximated from time averaging

Linear Signal RepresentationLinear Signal Representation

∑
−

=

=
1

0

ˆ
N

i
iiy Φx

input
signal

transform
coefficient

basis
function

Synthesis

xΦΦx T
iiiy == ,

∑
−

=

=
1

0

ˆˆˆ
N

i
iiy Φx

Analysis

Approximation

using as few
coefficients
as possible

Transform FundamentalsTransform Fundamentals

QAT x̂
STx ŷy

Analysis Synthesis

1D Analysis Transform
xTy A=

1D Synthesis Transform
yTx S ˆˆ =

xΦx ,Φi
T
iiy ==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−− 1

1

0

1

1

0

NN x

x
x

y

y
y

M

44 344 21

MM

AT

T
1N

T
1

T
0

Φ

Φ
Φ

{ }
functions basis

 Analysis iΦ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

− 1

1

0

1

1

0

ˆ

ˆ
ˆ

ˆˆˆ

ˆ

ˆ
ˆ

NN y

y
y

x

x
x

M

4444 34444 21

L
M

ST

1N10 ΦΦΦ
{ }

functions basis
 Synthesis ˆ

iΦ

InvertibilityInvertibility & Unitary& Unitary
Invertibility

perfect reconstruction, bi-orthogonal, reversible

ITTTTTT SAAS
1

AS ==⇒= −

[]ji −= δji Φ,Φ ˆ

Unitary
orthogonal, orthonormal

ITTTTTTT T
AAA

T
A

T
A

1
AS ==⇒== −

[]ji −= δji Φ,Φ
same analysis & synthesis basis functions

Norm PreservationNorm Preservation

Norm preservation property of orthonormal transform

()
2a2aa2

xxTxTxTyy ˆˆˆ −=−=−

() ()

From a coding perspective
Q error in the transform domain equals Q error in the
spatial domain!
Concentrate on the quantization of the transform
coefficients

() ()xxTTxxxxT,xxT A
T
A

T
aa ˆˆˆˆ −−=−−=

() ()
2

ˆˆˆ xxxxxx T −=−−=

2D Separable Transformation2D Separable Transformation
2D Analysis

2D Synthesis

transforming columns

transforming rows
T
AA TxTy =

N x N

T
S

T
A AS

T
SS TTx T T T y Tx ==

N x N

2D Orthogonal Synthesis

A
T
A A

T
AA

T
A TTx T T T y Tx ==

ExampleExample
Discrete Fourier Transform (DFT)

[] []

[] []

{ } N
πj

N

nk
N

N

k

nk
N

N

n

eWNkn

WkF
N

nf

WnfkF

2

1

0

1

0

 1,,1,0,

 1

−

−
−

=

−

=

≡−∈

=

=

∑

∑

K

{ }
H
AS

A

TT

T

N

W nk
N

1

=

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
==

jj

jj
N

11
1111

11
1111

 4 AT

k

n

KLT: Optimal Linear TransformKLT: Optimal Linear Transform
Karhunen-Loeve Transform (KLT)

Hotelling transform, principle component analysis (PCA)
Question:

Amongst the linear transforms, which one is the best
decorrelator, offering the best “compression”?

Problem:

Assumptions: x is zero-mean WSS RP.

{ } { }

 minimized. is signal original theand)(

 ˆtion representa catedpoint trun- ebetween th

 MSE thesuch that ,1,,1,0, functions basis
 lorthonorma ofset theFind . signalpoint -an Given

1

0

x

Φx

Φ
x

i

i

NL

yL

Ni
N

L

i i

<

=

−∈

∑ −

=

K

KLTKLT
Reminder:

Orthonormal constraint:
Autocorrelation matrix

[]ji −== δj
T
iji ΦΦΦ,Φ

[]
() () ()
() () ()

() () () ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−

==

021

201
110

xxxxxx

xxxxxx

xxxxxx

T
xx

RNRNR

NRRR
NRRR

E

L

MOMM

L

xxR

[] ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ −=−≡ ∑∑ ∑ −

=

−

=

−

=

2121

0

1

0

2ˆ N

Li ii
N

i

L

i iiii yEyyEEMSE ΦΦΦxx

[] ()()[]∑∑∑∑ −

=

−

=

−

=

−

=
==

1111 , N

Lj jj
N

Li
T
ii

N

Lj jj
N

Li ii yyEyyE ΦΦΦΦ

i
TT

ii ΦxxΦx,Φ ===iy

[] [] []∑∑∑ −

=

−

=

−

=
===

111 2 N

Li

N

Li

N

Li i EEyE i
TT

ii
TT

i ΦxxΦΦxxΦ

KLTKLT

Reminder: eeRxx λ=

[]
[]ji

EMSE N

Li

N

Li

−=

== ∑∑ −

=

−

=

δji

ixx
T
ii

TT
i

Φ,Φ

ΦRΦΦxxΦ

 wrt

 Minimize 11

eigenvector

eigenvalue

Lagrange Multiplier

()[] 0 1 1
=−−∑ −

= jiixx
T
i

i

Φ,ΦΦRΦ
Φ i

N

Li
λ

δ
δ

[]

[] AvAvv
v

uvu
v

T

T

2

=

=

δ
δ
δ
δ

()[] 0 1 =−− iiixx
T
i

i

Φ,ΦΦRΦ
Φ iλδ
δ

iixxiixx ΦΦRΦΦR ii λλ =⇒=− 0 2 2 ∑ −

=
=⇒

1N

Li iMSE λ

Optimal coding scheme: send the larger eigenvalues first!

KLT Problems KLT Problems
KLT problems

Signal dependent
Computationally expensive

statistics need to be computed
no structure, no symmetry, no guarantee of stability

Real signals are really stationary
Encoder/Decoder communication

Practical solutions
Assume a reasonable signal model
Blocking the signals to ensure stationary assumption holds
Making the transform matrix sparse & symmetric
Good KLT approximation for smooth signals: DCT!

Reminder: Linear Signal RepresentationReminder: Linear Signal Representation

∑
=

=
N

i
iic

0
ψx

input
signal

transform
coefficient

basis
function

Representation

iic ψx ,=Decomposition

Approximation ∑
<<

=

=
NL

i
iic

0

ˆ ψx

using as few
coefficients
as possible

MotivationsMotivations

Fundamental question: what is the best basis?
energy compaction: minimize a pre-defined error measure, say
MSE, given L coefficients
maximize perceptual reconstruction quality
low complexity: fast-computable decomposition and
reconstruction
intuitive interpretation

How to construct such a basis? Different viewpoints!
Applications

compression, coding
signal analysis
de-noising, enhancement
communications

KLT: Optimal Linear TransformKLT: Optimal Linear Transform

iixx ΦΦR iλ=

[]TE xx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= −1N10 ΦΦΦ LKLT

eigenvectors

Signal dependent
Require stationary signals
How do we communicate bases to the decoder?
How do we design “good” signal-independent transform?

Discrete Cosine TransformsDiscrete Cosine Transforms
Type I

Type II

Type III

Type IV

[] { }Mnm
M

mnKK
M

C nm
I ,,1,0, ,cos2

K∈⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

π

[] () { }1,,1,0, ,21cos2
−∈⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

= Mnm
M

nmK
M

C m
II K

π

[] () { }1,,1,0, ,21cos2
−∈⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

= Mnm
M

nmK
M

C n
III K

π

[] ()() { }1,,1,0, ,2121cos2
−∈⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++

= Mnm
M

nm
M

C IV K
π

⎩
⎨
⎧ =

=
otherwise ,1

,0 ,21 MiKi

DCT TypeDCT Type--IIII

⎪⎩

⎪
⎨
⎧

≠

=
=

−=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ +

=

⎥⎦
⎤

⎢⎣
⎡ +

=

∑

∑
−

=

−

=

0,1

0,
2

1
1,...,1,0,

2
)12(cos][2][

2
)12(cos][2][

1

0

1

0

i

i

Mnm
M

nmmX
M

nx

M
mnnx

M
mX

K

K

K

i

M

m
n

M

n
m

π

π

DCDC
8 x 8 block8 x 8 block

low
 fre

qu
enc

y

low
 fre

qu
enc

y

hig
h f

req
uen

cy

hig
h f

req
uen

cymidd
le

fre
qu

enc
y

midd
le

fre
qu

enc
y

ho
riz

on
ta

l e
dg

es
ho

riz
on

ta
l e

dg
es

vertical edgesvertical edges

DCT basisDCT basis

•• orthogonalorthogonal
•• real coefficientsreal coefficients
•• symmetry symmetry
•• nearnear--optimaloptimal
•• fast algorithmsfast algorithms

DCT SymmetryDCT Symmetry

()()

()

()

()
⎥⎦
⎤

⎢⎣
⎡ +

±=

⎥⎦
⎤

⎢⎣
⎡ +

−=

⎟
⎠
⎞

⎜
⎝
⎛ +−−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−−

M
mn

M
mn

M
Mm

M
mnM

M
nMm

2
12cos

2
12

2
2cos

2
1222cos

2
112cos

π

ππ

π

π

DCT basis functions
are either symmetric
or anti-symmetric

DCT: Recursive PropertyDCT: Recursive Property

An M-point DCT–II can be implemented via an M/2-point DCT–II and
an M/2-point DCT–IV

[] ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

IJ
JI

JC0
0C

C IV
M/2

II
M/2II

M 2
1

Butterfly
II
M/2C

JCIV
M/2

input
samples

DCT
coefficients

Fast DCT ImplementationFast DCT Implementation

13 multiplications and 29 additions per 8 input samples13 multiplications and 29 additions per 8 input samples

Block DCTBlock DCT

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

N

2

1

II
M

II
M

II
M

II
M

N

2

1

x

x
x

C0
0C0

0C0
0C

X

X
X

MM

input blocks,
each of size M

output blocks
of DCT coefficients,

each of size M

Overall Structure of JPEGOverall Structure of JPEG

Color
Converter

Level
Offset

8x8
DCT

Uniform
Quant.

DC
Pred.

DC
VLC

Zigzag
Scan

Run
-Level

AC
VLC

DC

AC

Color converter: RGB to YUV
Level offset: subtract 2^(N-1). N: bits / pixel.
Quantization: Different step size for different coefficients
DC: Predict from DC of previous block
AC:

Zigzag scan to get 1-D data
Run-level: joint coding of non-zero coeffs and number of zeros before
it.

JPEG QuantizationJPEG Quantization
Uniform mid-tread quantizer
Larger step sizes for chroma components
Different coefficients have different step sizes

Smaller steps for low frequency coefficients (more bits)
Larger steps for high frequency coefficients (less bits)
Human visual system is not sensitive to error in high frequency.

16 11 10 16 24 40 51 51
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Chroma Quantization TableLuma Quantization Table

Actual step size: Scale the basic table by a quality factor.

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Scaling of Quantization TableScaling of Quantization Table
Actual Q table = scaling x Basic Q table:

quality factor ≤ 50: scaling = 50 / quality;
quality factor > 50: scaling = 2 - quality / 50;

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Quality Factor

S
ca

lin
g

Quality Factor Scaling

10 5.0
20 2.5
50 1.0
75 0.5

16 11 10 16 24 40 51
12 12 14 19 26 58 60
14 13 16 24 40 57 69
14 17 22 29 51 87 80
18 22 37 56 68 109 103
24 35 55 64 81 104 113
49 64 78 87 103 121 120
72 92 95 98 112 100 103

DC PredictionDC Prediction
DC Coefficients: average of a block
DC of neighboring blocks are still similar to each others:
redundancy
The redundancy can be removed by differential coding:

e(n) = DC(n) – DC(n-1)
Only encode the prediction error e(n)

8x8 8x8 8x8

DC coeffs
of Lena

Coefficient CategoryCoefficient Category
Divide coefficients into categories of exponentially increased sizes
Use Huffman code to encode category ID
Use fixed length code within each category
Similar to Exponential Golomb code

Ranges Range Size DC Cat. ID

0 1

2

4

8

16

32

64

…

[-32767, -16384], [16384, 32767] 32768 15 15

-1, 1

0

1

2

3

4

5

6

-3, -2, 2, 3

-7, -6, -5, -4, 4, 5, 6, 7

-15, …, -8, 8, …, 15

-31, …, -16, 16, …, 31

-63, …, -32, 32, …, 63

… …

AC Cat. ID

N/A

1

2

3

4

5

6

…

Coding of DC CoefficientsCoding of DC Coefficients
Encode e(n) = DC(n) – DC(n-1)

8x8 8x8 8x8

DC Cat. Prediction Errors Base Codeword

0 0

-1, 1

-3, -2, 2, 3

-7, -6, -5, -4, 4, 5, 6, 7

-15, …, -8, 8, …, 15

-31, …, -16, 16, …, 31

-63, …, -32, 32, …, 63

…

1

010

011

100

00

101

110

1110

2

3

4

5

6

… …

Our example:
DC: 8. Assume last DC: 5 e = 8 – 5 = 3.
Cat.: 2, index 3 Bitstream: 10011

Coding of AC CoefficientsCoding of AC Coefficients
Most non-zero coefficients are in the upper-left corner
Zigzag scanning:

Example

8 24 -2 0 0 0 0 0
-31 -4 6 -1 0 0 0 0

0 -12 -1 2 0 0 0 0
0 0 -2 -1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Zigzag scanning result (DC is coded separately):
24 -31 0 -4 -2 0 6 -12 0 0 0 -1 -1 0 0 0 2 -2 0 0 0 0 0 -1 EOB
EOB: End of block symbol. The remaining coeffs are all 0.

Coding of AC CoefficientsCoding of AC Coefficients
Many AC coefficients are zeros:

Huffman coding is not efficient for symbol with prob. > 1/2

Example: zigzag scanning result
24 -31 0 -4 -2 0 6 -12 0 0 0 -1 -1 0 0 0 2 -2 0 0 0 0 0 -1 EOB
(Run, level) representation:
(0, 24), (0, -31), (1, -4), (0, -2), (1, 6), (0, -12), (3, -1), (0, -1),
(3, 2), (0, -2), (5, -1), EOB

Run-level coding: Jointly encode a non-zero coefficient and the number of
zeros before it (run of zeros): (run, level) event
Disadvantage: Symbol set is enlarged: #Run x #Level
Tradeoff:

Run: encode up to 15 zeros. Apply escape coding for greater values.
Level: Divide level into 16 categories, as in DC.
Apply Huffman coding to the joint Run / Category event:

Max symbol set size: 16 x 16 = 256.
Followed by fixed length code to signal the level index within each
category

Coding of AC CoefficientsCoding of AC Coefficients
Run /
Cat.

Base
codeword

Run /
Cat.

Base
Codeword

…

- …

…

…

…

…

…

…

1100

11011

1111001

111110110

11111110110

…

-

1/1

1/2

1/3

1/4

1/5

…

Run /
Cat.

1010 ZRL

15/1

15/2

15/3

15/4

15/5

…

00

01

100

1011

11010

…

Base codeword

EOB 1111 1111 001

0/1 1111 1111 1111 0101

1111 1111 1111 0110

1111 1111 1111 0111

1111 1111 1111 1000

1111 1111 1111 1001

…

0/2

0/3

0/4

0/5

…

(Run, Level) sequence: (0, 24), (0, -31), (1, -4), ……
Run/Cat. Sequence: 0/5, 0/5, 1/3, …

24 is the 24-th entry in Category 5 (0, 24): 11010 11000
-4 is the 3-th entry in Category 3 (1, -4): 1111001 011

ZRL: represent 16 zeros when number of zeros exceeds 15.
Example: 20 zeros followed by -1: (ZRL), (4, -1).

A Complete ExampleA Complete Example

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151
156 159 158 155 158 158 157 156

39.8 6.5 -2.2 1.2 -0.3 -1.0 0.7 1.1
-102.4 4.5 2.2 1.1 0.3 -0.6 -1.0 -0.4
37.7 1.3 1.7 0.2 -1.5 -2.2 -0.1 0.2
-5.6 2.2 -1.3 -0.8 1.4 0.2 -0.1 0.1
-3.3 -0.7 -1.7 0.7 -0.6 -2.6 -1.3 0.7
5.9 -0.1 -0.4 -0.7 1.9 -0.2 1.4 0.0
3.9 5.5 2.3 -0.5 -0.1 -0.8 -0.5 -0.1
-3.4 0.5 -1.0 0.8 0.9 0.0 0.3 0.0

2 1 0 0 0 0 0 0
-9 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Original data: 2-D DCT

Quantized by basic table:

Zigzag scanning:
2 1 -9 3 EOB

Q table:
16 11 …
12 …
14 …

floor(39.8/16 + 0.5) = 2
floor(6.5/11 + 0.5) = 1
-floor(102.4/12 + 0.5) = -9
floor(37.7/14 + 0.5) = 3

A Complete ExampleA Complete Example
Zigzag scanning:
2 1 -9 3 EOB

32 11 0 0 0 0 0 0
-108 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Dequantization:

122 122 121 121 120 119 119 118
121 121 120 119 119 118 117 117
120 120 120 119 118 117 117 117
123 123 122 122 121 120 120 120
131 130 130 129 128 128 127 127
142 141 141 140 139 139 138 138
153 152 152 151 150 150 149 149
159 159 159 158 157 157 156 156

Reconstructed block:

MSE: 5.67

Show details of encoding:

Progressive JPEGProgressive JPEG
Baseline JPEG encodes the image block by block:

Decoder has to wait till the end to decode and display the entire
image.

Progressive: Coding DCT coefficients in multiple scans
The first scan generates a low-quality version of the entire image
Subsequent scans refine the entire image gradually.

Two procedures defined in JPEG:
Spectral selection:

Divide all DCT coefficients into several bands (low, middle,
high frequency subbands…)
Bands are coded into separate scans

Successive approximation:
Send MSB of all coefficients first.
Send lower significant bits in subsequent scans.

JPEG Coding Result for LenaJPEG Coding Result for Lena

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
26

28

30

32

34

36

38

40

42

Bits/pixel

P
S

N
R

 (d
B

)

Lena

Quality factor:
5 25 50 75 90

QF
25

QF
5

Blocking artifact

SPIHT: Sorting Pass 2SPIHT: Sorting Pass 2
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

T=8
(1,1)D significant? Yes
(1,2) significant? No
(2,1) significant? No
(2,2) significant? No
LIP = { (1,2), (2,1), (2,2) }. LIS = { (1,1)L }
(1,1)L significant? Yes
LIS = { (1,2)D, (2,1)D, (2,2)D }
Is (1,2)D significant? Yes
Is (1,3) significant? Yes
LSP = { (1,1), (1,3) }
Is (2,3) significant? Yes
LSP = { (1,1), (1,3), (2,3) }

1 1(sign)

1
0
0
0

1

1 1(sign)

1

SPIHT: Sorting Pass 2SPIHT: Sorting Pass 2
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Is (1,4) significant? No
Is (2,4) significant? No
LIP = { (1,2), (2,1), (2,2), (1,4), (2,4) } LIS
= { (2,1)D, (2,2)D }
Is (2,1)D significant? No
Is (2,2)D significant? No
LIP = { (1,2), (2,1), (2,2), (1,4), (2,4) } LIS
= { (2,1)D, (2,2)D },

Refinement Pass 2
Like EZW, 1 bit for 18(1,1) 0

0

0
0

0

Bit budget = 18 bits

SPIHT: Sorting Pass 3SPIHT: Sorting Pass 3
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

T = 4
Is (1,2) significant? Yes
LSP = { (1,1), (1,3), (2,3) , (1,2)}
Is (2,1) significant? No
Is (2,2) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2)}
Is (1,4) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4)}
Is (2,4) significant? No
LIP = { (2,1), (2,4) }
Is (2,1)D significant? No
Is (2,2)D significant? Yes

0

0

0

1 1(sign)

1 0(sign)

1 1(sign)

1

SPIHT: Sorting Pass 3SPIHT: Sorting Pass 3
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Is (3,3) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3)}
Is (4,3) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3), (4,3)}
Is (3,4) significant? No
LIP = { (2,1), (2,4), (3,4) }
Is (4,4) significant? No
LIP = { (2,1), (2,4), (3,4), (4,4) }

LIP = { (2,1), (3,4), (3,4), (4,4) },
LIS = { (2,1)D },
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3), (4,3)}

0

0

1 0(sign)

1 1(sign)

Refinement Pass 3
Like EZW, 3 bit for
18(1,1), 8(1,3),
13(2,3)

0 1 0

Bit budget = 37 bits

Other ApproachesOther Approaches
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Idea can be generalized to other
different data structures
For example, quad-tree
Sorting Pass 1

1 0 0 0 1 0 0 0
Refinement Pass 1: nothing
Sorting Pass 2

0 0 1 0 1 1 0 0
Refinement Pass 2

Like EZW, 1 bit for 18
Sorting Pass 3

1 0 1 1 0 1 1 1 0 1 1 0 0
Refinement Pass 3

Like EZW, 3 bits for 18 8 13

0 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -20 3

6 -5
2 2
1 -2

0 0
-7 1

-6 4
3 -2

Scalable CodingScalable Coding

Trac D. Tran
ECE Department

The Johns Hopkins University
Baltimore MD 21218

OutlineOutline
Fundamentals. Main ideas. Applications
Scalability modes

Quality or SNR scalability
Spatial scalability
Temporal scalability
Frequency scalability or data partition
Hybrid scalability
Coarse- and fine-granularity scalability

Image scalable coding
Embedded zero-tree wavelet coding (EZW)
Set partitioning in hierarchical trees (SPIHT)
JPEG2000

Video scalable coding
Layer coding: coarse granularity
Fine-granularity video coding
3D sub-band video coding

FundamentalsFundamentals

Scalability coding: capability of recovering physically meaningful
signal information by decoding only partial compressed bit-stream
Scalable coding generates a single coded representation (bit-stream)
in a manner that facilitates the derivation of signal of many different
resolutions and qualities at the decoder
Embedded or progressive bit-stream: a bit stream that can be
truncated at any point and the decoded signal is the same as if the
signal has been originally encoded at that rate
Embeddedness is the extreme of scalability, sometimes labeled fine-
granularity scalability

Goals and ApproachesGoals and Approaches
Simulcast coding

Encode the same signal several times, each with a different
quality setting
Each of the generated bit-stream is non-scalable
Advantage: simple, efficient for each particular setting
Disadvantage: inefficient overall

Design goal in scalable coding
Realizing requirement for scalability
Minimizing the reduction in coding efficiency

Approach
Coarse-granularity scalability: only have a few layers, usually
two to three only
Fine-granularity scalability: many layers, offer more decoding
options and precise bit-rate control

Scalability ClassificationScalability Classification
Quality or SNR scalability

Represent signal with many layers, each at a different quality
level or at different accuracy

Spatial scalability
More than one layer and they can usually have different spatial
resolution

Temporal scalability
More than one layer & each can have different temporal
resolution (frame rate)

Frequency scalability or data partitioning
Single-coded bit-stream is artificially partitioned into layers,
each contains different frequency content

Hybrid scalability
Combination of two or more types of scalability above

Scalable ApplicationsScalable Applications
Quality/SNR scalability

Digital broadcast TV or HDTV with different quality layers
Multi-quality video-on-demand services
Error-resilient video over ATM and other networks

Spatial scalability
Inter-working between two different video standards
Layered digital TV broadcast
Video on LAN and computer networks
Error-resilient video over lossy channels

Temporal scalability
Migration from low to high temporal resolution
Networked video. Error resilience
Multi-quality video-on-demand services based on decoder capability as
well as communication bit-rate

Frequency scalability
Error resilience

Quality/SNR ScalabilityQuality/SNR Scalability

N layers of quality/SNR scalability

…

SNR-scalable compressed bit-stream

1 2 3 N

base layer enhancement layers

low quality high quality

Wavelet ZeroWavelet Zero--TreeTree

Main observation: there is
self-similarity between
wavelet coefficients across
different scales
If a parent is insignificant
with respect to a threshold
T, i.e. |C| < T, then so are
its children

jic , :parent

{ }12,12,12,22,122,2 , , :children ++++ jijijiji cccc

Wavelet Bit Plane CodingWavelet Bit Plane Coding

Embedded bitEmbedded bit--streamstream

browsingbrowsing
acceptableacceptable

high qualityhigh quality
losslesslossless

EZW CodingEZW Coding
Embedded zero-tree wavelet coding [Shapiro 1993]

Wavelet transform for image de-correlation
Exploitation of self-similarity of wavelet coefficients across
different scales to predict the location of significant information
Further compression with adaptive arithmetic coding

Main features
Bit-plane coding
One sorting pass and one refinement pass per bit plane with a
pre-defined scan pattern
Use four symbols to classify wavelet coefficients

POS: positive significant
NEG: negative significant
ZTR: zero-tree root; parent and all children are insignificant
IZ: isolated insignificant; parent is insignificant but at least
one of the children is significant

Toy ExampleToy Example
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

w
av

el
et

 c
oe

ff
ic

ie
nt

s

1100001101001010

11111100111001

11111010

110

1

++++++++++++

18 13 8 7 6 -6 -5 4 3 3 2 2 -2 -2 1 1
LSB

MSB
Sign

Rank coefficients by magnitude
Transmit coefficients bit plane by bit
plane: 0 010 10011100
Problem: how do we transmit the rank
order to the decoder?

Quantization & ReconstructionQuantization & Reconstruction

1

0

1

1

0

Original
coefficient
C = 22

X

X

X

X

1

Truncate
4 bit planes

Range=[16, 32)

X

X

X

0

1

Cr = 24

Receive 1
refinement bit
Range=[16, 24)

Cr = 20
= 24 – 4

X

X

1

0

1

Receive 2
refinement bits
Range=[20, 24)

Cr = 22
= 20 + 2

N-bit-plane truncation = scalar quantization with N2=Δ

EZW Basic AlgorithmEZW Basic Algorithm

Set initial threshold:
Sorting Pass – Dominant Pass

scan coefficients from top left corner
parent nodes are always scanned before children
For each coefficient, output a symbol among {POS, NEG, ZTR, IZ}
depending on the threshold T

Refinement Pass – Subordinate Pass
refine the accuracy of each significant coefficient by sending one
additional bit of its binary representation

Reduce the threshold by a factor of 2: and repeat Step 2

⎣ ⎦maxlog22=T

TT
2
1

=

EZW Example: First Bit PlaneEZW Example: First Bit Plane

18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

T=16
Dominant Pass 1

POS ZTR ZTR ZTR
Subordinate list = {18}

Subordinate Pass 1

No symbols because subordinate
step i works on significant
coefficients from dominant step
i-1 and earlier

Reconstruction = {24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

Compressed bit-stream

POS =11
NEG =10
IZ =01
ZTR =00

11 00 00 00 – 8 bits

EZW Example: 2nd Bit PlaneEZW Example: 2nd Bit Plane

* 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2T=8

Dominant Pass 2
ZTR IZ ZTR POS POS IZ IZ
Subordinate list = {18 8 13}

Subordinate Pass 2
Send the bit plane of coefficients
involved in Dominant Pass 1

00 01 00 11 11 01 01 – 14 bits

Reconstruction = {20 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0}
Bit budget = 23 bits

0 – 1 bit

Compressed bit-stream

POS =11
NEG =10
IZ =01
ZTR =00

EZW Example: 3rd Bit PlaneEZW Example: 3rd Bit Plane

* 3
6 -5

2 2
1 -2

* *
-7 1

-6 4
3 -2

T=4
Dominant Pass 3

ZTR POS NEG NEG IZ NEG POS IZ IZ
Subordinate list = {18,8,13,6,-5,-7,-6,4}

Subordinate Pass 3
Send the bit plane of coefficients involved in
Dominant Pass 2

Compressed bit-stream

POS =11
NEG =10
IZ =01
ZTR =00

00 11 10 10 01 10 11 01 01 – 18 bits

Reconstruction = {18 10 14 6 -6 -6 -6 6 0 0 0 0 0 0 0 0}
Bit budget = 44 bits

001 – 3 bits

EZW DecodingEZW Decoding
The decoder needs

Initial threshold T (or the max absolute value of all coefficients)
Original image size
Number of wavelet decomposition levels
Encoded bit-stream

Decoding process
Decode the arithmetic-encoded bit-stream into a stream of
symbols
Based on the side information, create data structures of
appropriate sizes
Traverse the encoding algorithm

SPIHTSPIHT
Most popular extension of EZW [Said-Pearlman 1996]
Improves EZW by having more efficient significance map coding based
on sophisticated set partitioning algorithm
SPIHT has 3 lists

LIP: list of insignificant pixels (individual insignificant coefficients)
LIS: list of insignificant lists (insignificant trees)
LSP: list of significant pixels (significant coefficients)

SPIHT defines 2 types of trees
Type D: check all descendants for significance
Type L: check all descendants except immediate children

Other features
Root node is checked independently of the rest of the tree
SPIHT sorting pass checks significance of LIP & LIS elements, then
moves significant coefficients to LSP

SPIHT ZeroSPIHT Zero--TreeTree

jic , :parent

D(i,j): all descendants of node (i,j)

O(i,j): all offsprings of node (i,j)

L(i,j) = D(i,j) – O(i,j)

Set Partitioning RulesSet Partitioning Rules

Initial partition is formed with the set {(i,j)} and D(i,j) for all
coefficients (i,j) in the lowpass subband
If D(i,j) is significant, it is partitioned into L(i,j) plus four single-
element sets in O(i,j)
If L(i,j) is significant, then it is partitioned into 4 sets D(k,l) where

()),(, jiOlk ∈

SPIHT Basic AlgorithmSPIHT Basic Algorithm
Initialization. Compute initial threshold. LIP: all root nodes (in lowpass subband). LIS: all
trees (type D). LSP: empty
Check significance of all coefficients in LIP

If significant, output 1 followed by a sign bit & move it to LSP
If insignificant, output 0

Check significance of all trees in LIS
For type-D tree

If significant, output 1 & proceed to code its children
If a child is significant, output 1, sign bit, & add it to LSP
If a child is insignificant, output 0 and add it to the end of LIP
If the child has descendants, move the tree to the end of LIS as type L,
otherwise remove it from LIS

If insignificant, output 0
For type-L tree

If significant, output 1, add each of the children to the end of LIS as
type D and remove the parent tree from LIS
If insignificant, output 0

Refinement pass, like EZW
Decrease the threshold by a factor of 2. Go to Step 2.

SPIHT Example: First PassSPIHT Example: First Pass
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Initialization
T=16
LIP={(1,1)}. LIS={(1,1)D}. LSP={}

Dominant Pass 1
(1,1) significant? Yes
LSP={(1,1)}
(1,1)D significant? No

Subordinate Pass 1

No symbols, like EZW

LIP={}. LIS={(1,1)D}. LSP={(1,1)}

Compressed bit-stream

1 1(sign)

0

Bit budget = 3 bits

SPIHT: Sorting Pass 2SPIHT: Sorting Pass 2
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

T=8
(1,1)D significant? Yes
(1,2) significant? No
(2,1) significant? No
(2,2) significant? No
LIP = { (1,2), (2,1), (2,2) }. LIS = { (1,1)L }
(1,1)L significant? Yes
LIS = { (1,2)D, (2,1)D, (2,2)D }
Is (1,2)D significant? Yes
Is (1,3) significant? Yes
LSP = { (1,1), (1,3) }
Is (2,3) significant? Yes
LSP = { (1,1), (1,3), (2,3) }

1 1(sign)

1
0
0
0

1

1 1(sign)

1

SPIHT: Sorting Pass 2SPIHT: Sorting Pass 2
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Is (1,4) significant? No
Is (2,4) significant? No
LIP = { (1,2), (2,1), (2,2), (1,4), (2,4) } LIS
= { (2,1)D, (2,2)D }
Is (2,1)D significant? No
Is (2,2)D significant? No
LIP = { (1,2), (2,1), (2,2), (1,4), (2,4) } LIS
= { (2,1)D, (2,2)D },

Refinement Pass 2
Like EZW, 1 bit for 18(1,1) 0

0

0
0

0

Bit budget = 18 bits

SPIHT: Sorting Pass 3SPIHT: Sorting Pass 3
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

T = 4
Is (1,2) significant? Yes
LSP = { (1,1), (1,3), (2,3) , (1,2)}
Is (2,1) significant? No
Is (2,2) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2)}
Is (1,4) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4)}
Is (2,4) significant? No
LIP = { (2,1), (2,4) }
Is (2,1)D significant? No
Is (2,2)D significant? Yes

0

0

0

1 1(sign)

1 0(sign)

1 1(sign)

1

SPIHT: Sorting Pass 3SPIHT: Sorting Pass 3
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Is (3,3) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3)}
Is (4,3) significant? Yes
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3), (4,3)}
Is (3,4) significant? No
LIP = { (2,1), (2,4), (3,4) }
Is (4,4) significant? No
LIP = { (2,1), (2,4), (3,4), (4,4) }

LIP = { (2,1), (3,4), (3,4), (4,4) },
LIS = { (2,1)D },
LSP = { (1,1), (1,3), (2,3), (1,2), (2,2), (1,4),
(3,3), (4,3)}

0

0

1 0(sign)

1 1(sign)

Refinement Pass 3
Like EZW, 3 bit for
18(1,1), 8(1,3),
13(2,3)

0 1 0

Bit budget = 37 bits

Other ApproachesOther Approaches
18 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -2

Idea can be generalized to other
different data structures
For example, quad-tree
Sorting Pass 1

1 0 0 0 1 0 0 0
Refinement Pass 1: nothing
Sorting Pass 2

0 0 1 0 1 1 0 0
Refinement Pass 2

Like EZW, 1 bit for 18
Sorting Pass 3

1 0 1 1 0 1 1 1 0 1 1 0 0
Refinement Pass 3

Like EZW, 3 bits for 18 8 13

0 3
6 -5

2 2
1 -2

8 13
-7 1

-6 4
3 -20 3

6 -5
2 2
1 -2

0 0
-7 1

-6 4
3 -2

JPEG2000 Image CodingJPEG2000 Image Coding

About JPEG2000 (ISO/IEC15444)

Objectives of JPEG2000
To provide new functionalities and features that current standards
fail to support

To support advanced applications in the new millennium

To extend the applicability of image coding in more applications

To allow imaging applications to be interactive and adaptive

JPEG2000 vs. JPEGJPEG2000 vs. JPEG
Key Advantages

Wavelet based – better rate-distortion performance
Scalable by resolution, quality, color channel, location in image

Lossless encoding, including lossy to lossless scalability

Error resilience

Region-of-Interest coding and progressive decoding

Compression ratio: 100:1

http://www.aware.com/products/compression/demos/lena_compare.html

JPEG2000 Flexible DecodingJPEG2000 Flexible Decoding

Bit stream

JPEG 2000 offers flexible decoding

Encoder choices:

tiling,
lossy/lossless
+ other choices

Decoder choices:

image resolution,
image fidelity,
region-of-interest,
Fixed-rate,
components

JPEG2000 Compression SchemeJPEG2000 Compression Scheme

R. Grosbois, et.al., “New approach to JPEG2000 compliant Region-of-Interest coding”, Proc. of the SPIE 46th Annual
Meeting, San Diego, CA, 2001

Part 1: Discrete Wavelet TransformPart 1: Discrete Wavelet Transform

Except for a few special case, e.g., the (5,3) integer filter, the DWT is generally more
computationally complexity (~2 to 3) than the block-based DCT; and DWT also requires
more memory than DCT.

Inherent to normal DWT:
Multi-resolution image representation
Eliminate blocking artifacts at high compression ratio
Each subband can be quantized differently

Special techniques:
Provide integer filter (e.g. (5,3) filter) to support lossless and lossy
compression within a single compressed bit-stream;
Line-based DWT and lifting implementations to reduce the memory
requirement and computational complexity.

LineLine--based DWT Implementationbased DWT Implementation

There is no need to buffer an
entire image in order to perform
wavelet transform.
Depending on filter lengths and
decomposition levels, a line of
wavelet coefficients can be made
available only after processing a
few lines of the input image.

Part 2: QuantizationPart 2: Quantization
Embedded Quantization:

Quantization index is encoded bit by bit, starting from Most Significant Bit (MSB)
to Least Significant Bit (LSB).
Example:

2=Δb

Wavelet coefficient = 209

Quantizer step size

Quantization index =
= 01101000;

Dequantized value based on fully decoded index:
(104+0.5)*2 = 209;

Decoding value after decoding 3 bit planes:

•Decoded index = 011 = 3;

•Step size = 2*32=64

•Dequantized value = (3+0.5)*64 = 224

⎣ ⎦ 1042/209 =

Part 3: Entropy Coding (TierPart 3: Entropy Coding (Tier--1)1)

Tier-1 Entropy coding
Each bit-plane is individually coded by the context-based adaptive
binary arithmetic coding (JBIG2 MQ-coder)
Each bit plane is partitioned into blocks, named code-blocks, which
are encoded independently
Each bit plane of each block is encoded in three sub-bit-plane passes

Significance propagation pass
Magnitude refinement pass
Clean-up pass

Example of BitExample of Bit--plane Coding plane Coding

HL2

LH2 HH2

HL1

LH1 HH1

Codeblocks (64x64)

Lena image (256x256)

M. Rabbani, et.al., “The JPEG2000 still image compression standard”, Proc. of ICIP, 2001

Part 4: Bit stream Organization (Tier 2)Part 4: Bit stream Organization (Tier 2)

Tier-1 generates a collection of bitstreams
One independent bitstream from each code block
Each bitstream is embedded

Tier-2 multiplexes the bitstreams for inclusion in the codestream and
signals the ordering of the resulting coded bitplane passes in an
efficient manner.
Tier-2 coded data can be rather easily parsed
Tier-2 enables SNR, resolution, spatial, ROI and arbitrary progression
and scalability

Example: BitExample: Bit--stream Organizationstream Organization

M. Rabbani, et.al., “The JPEG2000 still image compression standard”, Proc. of ICIP, 2001

Example: Progressive ResolutionExample: Progressive Resolution

JPEG2000 SummaryJPEG2000 Summary

JPEG2000 offers the state-of-the-art features
Superior low bit rate performance and coding efficiency (up to 30%
compared with DCT)
Lossless and lossy compression
Progressive transmission by pixel accuracy and resolution
Region-of-Interest coding
Random codestream access and processing
Error resilience
Open architecture
Content-based description
Side channel spatial information (transparency)
Protective image security
Continuous-tone and bi-level compression

	Image Coding and JPEG
	Outline
	Reminder
	Predictive Coding
	Open-Loop DPCM
	Open-Loop DPCM: Analysis
	Open-Loop DPCM: Analysis
	Closed-Loop DPCM: Analysis
	Closed-Loop DPCM
	Closed-Loop DPCM: Observations
	Linear Prediction
	Optimal Linear Prediction
	Optimal Linear Prediction
	Optimal Linear Prediction
	Optimal Linear Prediction
	Linear Signal Representation
	Transform Fundamentals
	Invertibility & Unitary
	Norm Preservation
	2D Separable Transformation
	Example
	KLT: Optimal Linear Transform
	KLT
	KLT
	KLT Problems
	Reminder: Linear Signal Representation
	Motivations
	KLT: Optimal Linear Transform
	Discrete Cosine Transforms
	DCT Type-II
	DCT Symmetry
	DCT: Recursive Property
	Fast DCT Implementation
	Block DCT
	Overall Structure of JPEG
	JPEG Quantization
	Scaling of Quantization Table
	DC Prediction
	Coefficient Category
	Coding of DC Coefficients
	Coding of AC Coefficients
	Coding of AC Coefficients
	Coding of AC Coefficients
	A Complete Example
	A Complete Example
	Progressive JPEG
	JPEG Coding Result for Lena
	SPIHT: Sorting Pass 2
	SPIHT: Sorting Pass 2
	SPIHT: Sorting Pass 3
	SPIHT: Sorting Pass 3
	Other Approaches
	Scalable Coding
	Outline
	Fundamentals
	Goals and Approaches
	Scalability Classification
	Scalable Applications
	Quality/SNR Scalability
	Wavelet Zero-Tree
	Wavelet Bit Plane Coding
	EZW Coding
	Toy Example
	Quantization & Reconstruction
	EZW Basic Algorithm
	EZW Example: First Bit Plane
	EZW Example: 2nd Bit Plane
	EZW Example: 3rd Bit Plane
	EZW Decoding
	SPIHT
	SPIHT Zero-Tree
	Set Partitioning Rules
	SPIHT Basic Algorithm
	SPIHT Example: First Pass
	SPIHT: Sorting Pass 2
	SPIHT: Sorting Pass 2
	SPIHT: Sorting Pass 3
	SPIHT: Sorting Pass 3
	Other Approaches
	JPEG2000 Image Coding
	JPEG2000 vs. JPEG
	JPEG2000 Flexible Decoding
	JPEG2000 Compression Scheme
	Part 1: Discrete Wavelet Transform
	Line-based DWT Implementation
	Part 2: Quantization
	Part 3: Entropy Coding (Tier-1)
	Example of Bit-plane Coding
	Part 4: Bit stream Organization (Tier 2)
	Example: Bit-stream Organization
	Example: Progressive Resolution
	JPEG2000 Summary

